Matching Items (5)
152044-Thumbnail Image.png
Description
Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise,

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.
ContributorsKhunti, Hitesh Devshi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
150990-Thumbnail Image.png
Description
The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life expectancy change. For the greater of the last five decades

The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life expectancy change. For the greater of the last five decades the average life expectancy at birth increased globally by almost 20 years. In the United States specifically, life expectancy has grown from 50 years in 1900 to 78 years in 2009. That is a 76% increase in just over a century. As great as this increase sounds for humanity it means there are soon to be real issues in the healthcare world. A larger older population will need more healthcare services but have fewer young professionals to provide those services. Technology and science will need to continue to push the boundaries in order to develop and provide the solutions needed to continue providing the aging world population sufficient healthcare. One solution sure to help provide a brighter future for healthcare is mobile health (m-health). M-health can help provide a means for healthcare professionals to treat more patients with less work expenditure and do so with more personalized healthcare advice which will lead to better treatments. This paper discusses one area of m-health devices specifically; human breath analysis devices. The current laboratory methods of breath analysis and why these methods are not adequate for common healthcare practices will be discussed in more detail. Then more specifically, mobile breath analysis devices are discussed. The topic will encompass the challenges that need to be met in developing such devices, possible solutions to these challenges, two real examples of mobile breath analysis devices and finally possible future directions for m-health technologies.
ContributorsLester, Bryan (Author) / Forzani, Erica (Thesis advisor) / Xian, Xiaojun (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2012
153741-Thumbnail Image.png
Description
By offering increased access to medical care, telemedicine offers significant opportunity for the process of development under Amartya Sen’s definition, that development is freedom, including freedom from illness, early death, and preventable disease. It advances development by freeing people from these burdens. However, like many emerging technologies, organizing information and

By offering increased access to medical care, telemedicine offers significant opportunity for the process of development under Amartya Sen’s definition, that development is freedom, including freedom from illness, early death, and preventable disease. It advances development by freeing people from these burdens. However, like many emerging technologies, organizing information and understanding the field faces significant challenges. This paper applies Bashshur's three-dimensional model of telemedicine to the classification of telemedicine literature found in databases to assess the value of the model as a tool for classification. By standardizing language and creating a repository of research done to date in a centralized location, the field can better understand how it is progressing and where work still needs to be done. This paper aims to see if Bashshur's model serves well for this task.
ContributorsBlum, Alexander (Author) / Parmentier, Mary Jane (Thesis advisor) / Zachary, Gregg (Committee member) / Grossman, Gary (Committee member) / Arizona State University (Publisher)
Created2015
155174-Thumbnail Image.png
Description
Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.
ContributorsShao, Dangdang (Author) / Tao, Nongjian (Thesis advisor) / Li, Baoxin (Committee member) / Hekler, Eric (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2016
151757-Thumbnail Image.png
Description
Statistical process control (SPC) and predictive analytics have been used in industrial manufacturing and design, but up until now have not been applied to threshold data of vital sign monitoring in remote care settings. In this study of 20 elders with COPD and/or CHF, extended months of peak flow monitoring

Statistical process control (SPC) and predictive analytics have been used in industrial manufacturing and design, but up until now have not been applied to threshold data of vital sign monitoring in remote care settings. In this study of 20 elders with COPD and/or CHF, extended months of peak flow monitoring (FEV1) using telemedicine are examined to determine when an earlier or later clinical intervention may have been advised. This study demonstrated that SPC may bring less than a 2.0% increase in clinician workload while providing more robust statistically-derived thresholds than clinician-derived thresholds. Using a random K-fold model, FEV1 output was predictably validated to .80 Generalized R-square, demonstrating the adequate learning of a threshold classifier. Disease severity also impacted the model. Forecasting future FEV1 data points is possible with a complex ARIMA (45, 0, 49), but variation and sources of error require tight control. Validation was above average and encouraging for clinician acceptance. These statistical algorithms provide for the patient's own data to drive reduction in variability and, potentially increase clinician efficiency, improve patient outcome, and cost burden to the health care ecosystem.
ContributorsFralick, Celeste (Author) / Muthuswamy, Jitendran (Thesis advisor) / O'Shea, Terrance (Thesis advisor) / LaBelle, Jeffrey (Committee member) / Pizziconi, Vincent (Committee member) / Shea, Kimberly (Committee member) / Arizona State University (Publisher)
Created2013