Matching Items (3)

Filtering by

Clear all filters

134624-Thumbnail Image.png

Doxorubicin Induced Cardiotoxicity and High Intensity Aerobic Exercise

Description

Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation and upregulated mTOR phosphorylation. Akt is activated by cellular stress

Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation and upregulated mTOR phosphorylation. Akt is activated by cellular stress and damage. AMPK is activated by increases in AMP and ADP concentrations and decreased ATP concentration. mTOR is active in cellular growth and remodeling. These proteins are cellular kinases with cascades that are influenced by one another. Exercise preconditioning may diminish the cardiotoxic effects on these proteins. Female, Ovariectomized Sprague-Dawley rats (N=33) were randomized to: Exercise+DOX (EX+DOX, n=9); Exercise+Vehicle (EX+VEH, n=8); Sedentary+DOX (SED+DOX, n=8); and Sedentary+Vehicle (SED+VEH, n=8) groups. DOX (4mg/kg) or VEH (saline) intraperitoneal injections were administered bi-weekly (cumulative dose of 12mg/kg). VEH animals received body weight matched volumes of saline based on dosing in animals receiving DOX. Exercise (EX) animals underwent high intensity (85-95% VO2 peak) interval training (HIIT) (4x4 min bouts) separated by low intensity (50-60% VO2max) intervals (2 min bouts) 5 days per week. Exercise began 1 week prior to the first injection and was continued throughout the study. Rats were euthanized 5 days after the last injection. Left ventricular tissue was isolated, processed into lysate and used for western blot analyses [2x2 ANOVA; (α=0.05)]. DOX induced significant phosphorylation of Akt and mTOR (p=0.035; p=0.032) only in SED+DOX rats, but unchanged in EX+DOX rats. No significant differences (p=0.374) in AMPK phosphorylation were observed between groups. Exercise Preconditioning prevents some DOX-induced changes in the cardiac mTOR signaling pathway implicated in pathological remodeling.

Contributors

Agent

Created

Date Created
2017-05

136227-Thumbnail Image.png

The Role of Lipolysis in Regulating Plasma Glucose Concentrations in Mourning Doves

Description

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.

Contributors

Agent

Created

Date Created
2015-05

135088-Thumbnail Image.png

High-Intensity Exercise Preconditioning Prevents Downregulation of eNOS Expression in the Aorta Following Doxorubicin Treatment

Description

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is thus hypothesized to counteract oxidative stress when initiated prior to DOX administration. Adult 8-week old, ovariectomized female Sprague-Dawley rats were divided into 4 groups: sedentary + vehicle (Sed+Veh); Sed+DOX; exercise + veh (Ex+Veh); and Ex+DOX. Rats in the exercise groups were preconditioned with high intensity interval training consisting of 4x4 minute bouts of exercise at 85-95% of VO2peak separated by 2 minutes of active recovery performed 5 days per week. Exercise was implemented one week prior to the first injection and continued throughout the study. Animals received either DOX (4mg/kg) or veh (saline) intraperitoneal injections bi-weekly for a cumulative dose of 12 mg/kg per animal. Five days following the final injection, animals were anesthetized with isoflurane, decapitated and aortas and perivascular adipose tissue (PVAT) were removed for western blot analyses. No significant differences in aortic protein expression were detected for inducible nitric oxide synthase (iNOS) or the upstream activator of endothelial nitric oxide synthase (eNOS), Akt, across groups (p>0.05), whereas eNOS protein expression was significantly downregulated in Sed+DOX (p=0.003). In contrast, eNOS expression was not altered in Ex+DOX treated animals. Protein expression of iNOS in PVAT was upregulated with exercise in the DOX-treated groups (p=0.039). These findings suggest that exercise preconditioning may help mitigate vascular effects of DOX by preventing downregulation of eNOS in the aorta.

Contributors

Agent

Created

Date Created
2016-12