Matching Items (8)
Filtering by

Clear all filters

152666-Thumbnail Image.png
Description
In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat

In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat meal protects against postprandial endothelial dysfunction in obese adolescent males. Fourteen obese adolescent males (BMI%tile=98.5±0.6; 14.3±1.0yrs) completed the study. After initial screening, participants arrived, fasted at 9:00 in the morning where brachial artery flow-mediated dilation (FMD) was measured using duplex ultrasound after 20min of supine rest (7.0±3.0%) and completed a maximal exercise test on a cycle ergometer (VO2peak=2.6±0.5 L/min). Participants were randomized and completed 2 conditions: a morning high-fat meal challenge with evening prior HIIE (EX+M) or a morning high-fat meal challenge without prior exercise (MO). The EX+M condition included a single HIIE session on a cycle ergometer (8 X 2min at ≥90%HRmax, with 2min active recovery between bouts, 42min total) which was performed at 17:00 the evening prior to the meal challenge. In both conditions, a mixed-meal was tailored to participants body weight consisting of 0.7g of fat/kg of body weight consumed (889±95kcal; 65% Fat, 30% CHO). FMD was measured at fasting (>10hrs) and subsequently measured at 2hr and 4hr after high-fat meal consumption. Exercise did not improve fasting FMD (7.5±3.0 vs. 7.4±2.8%, P=0.927; EX+M and MO, respectively). Despite consuming a high-fat meal, FMD was not reduced at 2hr (8.4±3.4 vs. 7.6±3.9%; EX+M and MO, respectively) or 4hr (8.8±3.9 vs. 8.6±4.0%; EX+M and MO, respectively) in either condition and no differences were observed between condition (p(condition*time)=0.928). These observations remained after adjusting for baseline artery diameter and shear rate. We observed that HIIE, the evening prior, had no effect on fasting or postprandial endothelial function when compared with a meal only condition. Future research should examine whether exercise training may be able to improve postprandial endothelial function rather than a single acute bout in obese youth.
ContributorsRyder, Justin Ross (Author) / Shaibi, Gabriel Q (Thesis advisor) / Gaesser, Glenn A (Committee member) / Vega-Lopez, Sonia (Committee member) / Crespo, Noe C (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2014
136618-Thumbnail Image.png
Description
This study examines the effect of exercise therapy on a stationary bike on cognitive function, specifically inhibition and set-switching, in adolescents with Down syndrome. 44 participants were randomly divided between the voluntary cycling therapy group (VCT) (i.e., self-selected cadence), assisted cycling therapy group (ACT) (i.e., 30% faster than self-selected cadence

This study examines the effect of exercise therapy on a stationary bike on cognitive function, specifically inhibition and set-switching, in adolescents with Down syndrome. 44 participants were randomly divided between the voluntary cycling therapy group (VCT) (i.e., self-selected cadence), assisted cycling therapy group (ACT) (i.e., 30% faster than self-selected cadence accomplished by a motor), and a control group (NC) in which the participants did not undergo any exercise therapy. Both cycling groups rode a stationary bicycle, for 30 minutes, three times a week, for eight-weeks. At the beginning (i.e., pretest) and end (i.e., posttest) of the eight-week session the participants completed tasks to evaluate their cognitive function. They completed three trials of the card sort test (i.e., set-switching) and three trials of the knock-tap test (i.e, inhibition) before and after eight-weeks of cycling therapy. The scores of these tests were analyzed using one-way ANOVA between groups and paired samples t-tests. The results showed that after eight-weeks of cycling therapy the participants in the VCT group performed worse in the knock-tap test, but improved in two trials of the card sort test. The results also showed that the participants in the ACT group performed worse after eight-weeks of exercise therapy in one trial of the card sort test. No significant changes were seen for the control group. Due to the fact that on average the participants in the VCT group cycled with a higher heart rate, our results suggest exercise that significantly elevates heart rate can improve cognitive function, specifically set-switching, in adolescents with Down syndrome.
ContributorsBenson, Alicia Meigh (Author) / Ringenbach, Shannon (Thesis director) / Amazeen, Eric (Committee member) / Maraj, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
148147-Thumbnail Image.png
Description

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma concentration of the dopamine metabolite homovanillic acid (HVA) in response to acute physical activity. Plasma HVA concentration was measured before exercise and during the last 10 minutes of the exercise bout via competitive ELISA. On average the optical density (OD) of the samples taken from lean subjects decreased from 0.203 before exercise to 0.192 during exercise, indicating increased plasma HVA concentration. In subjects with obesity OD increased from 0.210 before exercise to 0.219 during exercise, indicating reduced plasma HVA concentration. These differences in OD were not statistically significant. Between the lean group and the group with obesity no significant difference was observed between the OD of the plasma samples taken before exercise, but a significant difference (p = 0.0209) was observed between the ODs of the samples taken after exercise. This indicated that there was a significant difference between the percent changes in OD between the lean group and the group with obesity, which suggested that there may be a body weight-dependent difference in the amount of dopamine released in response to exercise. Because of the lack of significance in the changes in OD within the lean group and the group with obesity the results of this study were insufficient to conclude that this difference is not due to chance, but further investigation is warranted.

ContributorsYoder, Jordan Corinne (Author) / Katsanos, Christos (Thesis director) / Davies, Pauline (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162201-Thumbnail Image.png
Description

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise over time.

ContributorsPankoff, Mia (Author) / Quezada, Gabrielle (Co-author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / Ruiz Tejada, Anaissa (Committee member) / Barrett, The Honors College (Contributor) / Edson College of Nursing and Health Innovation (Contributor)
Created2021-12
162202-Thumbnail Image.png
Description

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise over time.

ContributorsQuezada, Gabrielle (Author) / Pankoff, Mia (Co-author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / Ruiz Tejada, Anaissa (Committee member) / Barrett, The Honors College (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2021-12
165145-Thumbnail Image.png
Description

According to the CDC, obesity has increased from 30.5% to 42.4% over the past 18 years. Western diets (WDs) consist of large portions in high fats, high carbohydrates, excess sugar and high-glycemic foods that can cause metabolic complications and mitochondrial dysfunction. Diet-induced obesity can lead to changes in muscle metabolism

According to the CDC, obesity has increased from 30.5% to 42.4% over the past 18 years. Western diets (WDs) consist of large portions in high fats, high carbohydrates, excess sugar and high-glycemic foods that can cause metabolic complications and mitochondrial dysfunction. Diet-induced obesity can lead to changes in muscle metabolism and muscle fiber phenotypes, which in turn lead to metabolic complications. Muscle fiber phenotype is determined protein isoform-content of myosin heavy chain (MHC). Regular exercise alters mitochondrial content and fat oxidation and shifts MHC proportions under healthy circumstances. However, diet and exercise-driven fiber type shifts in diet-induced obesity are less understood. We designed our experiment to better understand the impact of diet and/ or exercise on fiber type content of gastrocnemius muscle in diet-induced obese mice. Exercise and genistein may be used as a treatment strategy to restore the MHC proportions in obese subjects to that of the lean subjects. We hypothesized that genistein and exercise would have the greatest MHC I change in muscle fiber phenotype of mouse gastrocnemius muscles. Further, we also hypothesized that a standard diet would reverse the expected increase in fast fiber phenotype (MHC IIb). Lastly, we also hypothesized that exercise would also reduce the abundance of MHC IIb. Gastrocnemius muscles were collected from mice, homogenized, run through gel electrophoresis and stained to give muscle fiber proportions. Paired sample t-tests were conducted for differences between the MHC isoforms compared to the lean (LN) and high-fat diet (HFD) control groups. The results showed that genistein and exercise significantly increased the abundance of MHC I muscle fibers (19%, p<0.05). Additionally, diet and exercise restored the muscle fiber phenotype to that of lean control. As expected, HFD obese mice exhibited elevated fast twitch fibers compared to only 3% slow twitch fibers. These findings show the potential for exercise and supplementation of genistein as a strategy to combat diet induced obesity. Future research should aim to understand the mechanisms that genistein acts on to make these changes, and aim to replicate these data in humans with obesity.

ContributorsSodhi, Harkaran (Author) / Katsanos, Christos (Thesis director) / Wang, Shu (Committee member) / Serrano, Nathan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
161651-Thumbnail Image.png
Description
Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated

Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated metabolic disturbances. Exercise had shown to improve and revert the metabolic abnormalities in obese individuals. Also, genistein has a suggested potential anti-obesogenic effect. Studying the dynamic interaction of the GM with relevant organs in metabolic homeostasis is crucial for the design of new long-term therapies to treat obesity. The purpose of this experimental study is to examine exercise (Exe), genistein (Gen), and their combined intervention (Exe + Gen) effects on GM composition and musculoskeletal mitochondrial oxidative function in diet-induced obese mice. Also, this study aims to explore the association between gut microbial diversity and mitochondrial oxidative capacity. 132 adult male (n=63) and female (n= 69) C57BL/6 mice were randomized to one of five interventions for twelve weeks: control (n= 27), high fat diet (HFD; n=26), HFD + Exe (n=28), HFD + Gen (n=27), or HFD + Exe + Gen (n=24). All HFD drinking water was supplemented with 42g sugar/L. Fecal pellets were collected, DNA extracted, and measured the microbial composition by sequencing the V4 of the 16S rRNA gene with Illumina. The mitochondrial oxidative capacity was assessed by measuring the enzymatic kinetic activity of the citrate synthase (CS) of forty-nine mice. This study found that Exe groups had a significantly higher bacterial richness compared to HFD + Gen or HFD group. Exe + Gen showed the synergistic effect to drive the GM towards the control group´s GM composition as we found Ruminococcus significantly more abundant in the HFD + Exe + Gen than the rest of the HFD groups. The study did not find preventive capacity in either of the interventions on the CS activity. Therefore, further research is needed to confirm the synergistic effect of Exe, Exe, and Gen on the gut bacterial richness and the capacity to prevent HFD-induced deleterious effect on GM and mitochondrial oxidative capacity.
ContributorsOrtega Santos, Carmen Patricia (Author) / Whisner, Corrie M (Thesis advisor) / Dickinson, Jared M (Committee member) / Katsanos, Christos (Committee member) / Gu, Haiwei (Committee member) / Liu, Li (Committee member) / Al-Nakkash, Layla (Committee member) / Arizona State University (Publisher)
Created2021
190774-Thumbnail Image.png
Description
This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA

This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA and, thus, slow the rapid increase in sedentary lifestyles. Transcranial direct current stimulation (tDCS) involves brain neuromodulation by facilitating or inhibiting spontaneous neural activity. tDCS applied to the dorsolateral prefrontal cortex (DLPFC) increases dopamine release in the striatum, an area of the brain involved in the reward–motivation pathways. I propose that a repeated intervention, consisting of tDCS applied to the DLPFC followed by a short walking exercise stimulus, enhances motivation for PA and daily PA levels in healthy adults. Results showed that using tDCS followed by short-duration walking exercise may enhance daily PA levels in low-physically active participants but may not have similar effects on those with higher levels of daily PA. Moreover, there was a significant effect on increasing intrinsic motivation for PA in males, but there were no sex-related differences in PA. These effects were not observed during a 2-week follow-up period of the study after the intervention was discontinued. Further research is needed to confirm and continue exploring the effects of tDCS on motivation for PA in larger cohorts of sedentary populations. This novel research will lead to a cascade of new evidence-based technological applications that increase PA by employing approaches rooted in biology.
ContributorsRuiz Tejada, Anaissa (Author) / Katsanos, Christos (Thesis advisor) / Neisewander, Janet (Committee member) / Sadleir, Rosalind (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2023