Matching Items (3)
Filtering by

Clear all filters

156078-Thumbnail Image.png
Description
Cardiovascular disease and diabetes are major health burdens. Diabetes is a primary risk factor of cardiovascular disease, and there is a strong link between obesity and risk of developing diabetes. With the prevalence of prediabetes highest among overweight/obese individuals, investigation into preventative strategies are needed. Aerobic exercise is a potent

Cardiovascular disease and diabetes are major health burdens. Diabetes is a primary risk factor of cardiovascular disease, and there is a strong link between obesity and risk of developing diabetes. With the prevalence of prediabetes highest among overweight/obese individuals, investigation into preventative strategies are needed. Aerobic exercise is a potent stimulus for both insulin and non-insulin dependent glucose uptake into the skeletal muscle. A single exercise session can improve insulin sensitivity within hours after exercise. The effects of intensity, type, and volume of exercise on glucose homeostasis have been studied extensively; however, controlling for muscle contraction frequency with a constant exercise intensity and workload has not been examined. The purpose of this study was to compare muscle contraction frequency during aerobic exercise by altering cycling cadence on insulin sensitivity and vascular health. Eleven obese males (age=28yr, BMI=35kg/m2) completed three conditions in random order: 1) control-no exercise; 2) 45-min cycling at 45 revolutions per minute (45RPM) at 65-75%VO2max; 3) 45-min cycling at 90RPM at 65-75%VO2max. Glucose control and insulin sensitivity were assessed with oral glucose tolerance tests (OGTT) 4 hours post-exercise. Vascular health was assessed via flow-mediated dilation (FMD) pre-exercise, 1-hr and 2-hr post exercise and ambulatory blood pressure was assessed pre-exercise, and continually every 15 min post-exercise. Linear mixed models were used to compare the mean differences in outcome variables. There were no significant differences found between control and both exercise conditions for all OGTT outcomes and no differences were found between control and exercise in FMD (all, p>0.05). Significant effects for exercise were found for both brachial and central blood pressure measures. Brachial systolic blood pressures were lower at 2- and 4-hr post-exercise by approximately -10 and -8mmHg, respectively (p<0.001 and p=0.004) versus control. Central systolic blood pressures were lower at 2-, 3-, and 4-hr post-exercise by approximately -8, -9 and -6mmHg, respectively (p<0.001, p=0.021 and p=0.004) versus control. In conclusion, aerobic exercise, regardless of muscle contraction frequency, were unable to effect glucose control and insulin sensitivity. Similarly, there was no effect on vascular function. However, there was a significant effect of aerobic exercise on reducing post-exercise blood pressure.
ContributorsJarrett, Catherine Lee (Author) / Gaesser, Glenn A (Thesis advisor) / Angadi, Siddhartha S (Committee member) / Dickinson, Jared M (Committee member) / Whisner, Corrie M (Committee member) / Todd, Michael W (Committee member) / Arizona State University (Publisher)
Created2017
152037-Thumbnail Image.png
Description
Obesity is currently a prevalent health concern in the United States. Essential to combating it are accurate methods of assessing individual dietary intake under ad libitum conditions. The acoustical monitoring system (AMS), consisting of a throat microphone and jaw strain sensor, has been proposed as a non-invasive method for tracking

Obesity is currently a prevalent health concern in the United States. Essential to combating it are accurate methods of assessing individual dietary intake under ad libitum conditions. The acoustical monitoring system (AMS), consisting of a throat microphone and jaw strain sensor, has been proposed as a non-invasive method for tracking free-living eating events. This study assessed the accuracy of eating events tracked by the AMS, compared to the validated vending machine system used by the NIDDK in Phoenix. Application of AMS data toward estimation of mass and calories consumed was also considered. In this study, 10 participants wore the AMS in a clinical setting for 24 hours while all food intake was recorded by the vending machine. Results indicated a correlation of 0.76 between number of eating events by the AMS and the vending machine (p = 0.019). A dependent T-test yielded a p-value of 0.799, illustrating a lack of significant difference between these methods of tracking intake. Finally, number of seconds identified as eating by the AMS had a 0.91 correlation with mass of intake (p = 0.001) and a 0.70 correlation with calories of intake (p = 0.034). These results indicate that the AMS is a valid method of objectively recording eating events under ad libitum conditions. Additional research is required to validate this device under free-living conditions.
ContributorsSteinke, Amanda (Author) / Johnston, Carol (Thesis advisor) / Votruba, Susanne (Committee member) / Hall, Richard (Committee member) / Arizona State University (Publisher)
Created2013
161651-Thumbnail Image.png
Description
Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated

Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated metabolic disturbances. Exercise had shown to improve and revert the metabolic abnormalities in obese individuals. Also, genistein has a suggested potential anti-obesogenic effect. Studying the dynamic interaction of the GM with relevant organs in metabolic homeostasis is crucial for the design of new long-term therapies to treat obesity. The purpose of this experimental study is to examine exercise (Exe), genistein (Gen), and their combined intervention (Exe + Gen) effects on GM composition and musculoskeletal mitochondrial oxidative function in diet-induced obese mice. Also, this study aims to explore the association between gut microbial diversity and mitochondrial oxidative capacity. 132 adult male (n=63) and female (n= 69) C57BL/6 mice were randomized to one of five interventions for twelve weeks: control (n= 27), high fat diet (HFD; n=26), HFD + Exe (n=28), HFD + Gen (n=27), or HFD + Exe + Gen (n=24). All HFD drinking water was supplemented with 42g sugar/L. Fecal pellets were collected, DNA extracted, and measured the microbial composition by sequencing the V4 of the 16S rRNA gene with Illumina. The mitochondrial oxidative capacity was assessed by measuring the enzymatic kinetic activity of the citrate synthase (CS) of forty-nine mice. This study found that Exe groups had a significantly higher bacterial richness compared to HFD + Gen or HFD group. Exe + Gen showed the synergistic effect to drive the GM towards the control group´s GM composition as we found Ruminococcus significantly more abundant in the HFD + Exe + Gen than the rest of the HFD groups. The study did not find preventive capacity in either of the interventions on the CS activity. Therefore, further research is needed to confirm the synergistic effect of Exe, Exe, and Gen on the gut bacterial richness and the capacity to prevent HFD-induced deleterious effect on GM and mitochondrial oxidative capacity.
ContributorsOrtega Santos, Carmen Patricia (Author) / Whisner, Corrie M (Thesis advisor) / Dickinson, Jared M (Committee member) / Katsanos, Christos (Committee member) / Gu, Haiwei (Committee member) / Liu, Li (Committee member) / Al-Nakkash, Layla (Committee member) / Arizona State University (Publisher)
Created2021