Matching Items (7)
Filtering by

Clear all filters

133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Imaging analysis of local drug delivery is important because in both studies involving chemotherapy targeted toward glioblastoma and antimicrobial addressing infection, the drug concentration and distribution are unknown. There are a variety of studies focused on the local delivery of drug to a targeted location, but we are presenting a

Imaging analysis of local drug delivery is important because in both studies involving chemotherapy targeted toward glioblastoma and antimicrobial addressing infection, the drug concentration and distribution are unknown. There are a variety of studies focused on the local delivery of drug to a targeted location, but we are presenting a way of quantifying the concentration of the drug and the distribution of the drug during a period of time. This study aims to do that by utilizing Materialise Mimics to analyze the MRI images of local drug delivery in glioblastoma in canines and antimicrobial gel in rabbit femurs. The focus of the technique is to register the anatomy in T1-weighted spin echo images to the drug delivery in T2 flow attenuated inversion recovery (FLAIR) images in order to see where the drug went and did not go relative to the anatomical part. Both studies focus on addressing effective volumes of drug to a designated anatomical area, in which the delivery can be difficult as it involves bypassing the blood brain barrier in the first study and achieving effective volumes while preventing toxicity to the kidneys in the second study. The goal of this project lies in determining the drug volumes and location for the specified duration and anatomical part.
ContributorsJehng, Hope (Author) / Caplan, Michael (Thesis director) / Sirianni, Rachael (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134744-Thumbnail Image.png
Description
It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of

It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of low-fat to high-fat diet. Exogenous norepinephrine (NE) injections (dose of 0.25 mg/kg i.p.) were administered in order to elicit a temperature response, where increases in temperature indicate increased activity. Temperatures were measured via temperature sensing transponders that had been inserted at the following three sites: interscapular BAT (iBAT), the abdomen (core), and lower back (reference). Data showed increased BAT activity during acute (2-3 weeks) high fat diet (HFD) in comparison to low fat diet (LFD), but a moderate to marked decrease in BAT activity during chronic HFD (6-8 weeks) when compared to acute HFD. This suggests that while a HFD may initially stimulate BAT in the short-term, a long-term HFD diet may have negative effects on BAT activation.
ContributorsSivak, Hanna (Author) / Sweazea, Karen (Thesis director) / Herman, Richard (Committee member) / Caplan, Michael (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134903-Thumbnail Image.png
Description
Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This

Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This activation should, theoretically, help to control weight gain. A protocol was developed to study four male Sprague-Dawley rats throughout a fourteen week period through the measurement of brown adipose tissue blood flow and brown adipose tissue, back, and abdomen temperatures to determine if diet induced thermogenesis existed and could be activated through norepinephrine. The sedative used to obtain blood flow measurements, ketamine, was discovered to induce a thermal response prior to the norepinephrine injection by mimicking the norepinephrine response in the sympathetic nervous system. This discovery altered the original protocol to exclude an injection of norepinephrine, as this injection would have no further thermal effect. It was found that ketamine sedation excited diet induced thermogenesis in periods of youth, low fat diet, and early high fat diet. The thermogenic capacity was found to be at a peak of 2.1 degrees Celsius during this time period. The data also suggested that the activation of diet induced thermogenesis decreased as the period of high fat diet increased, and by week 4 of the high fat diet, almost all evidence of diet induced thermogenesis was suppressed. This indicated that diet induced thermogenesis is time and diet dependent. Further investigation will need to be made to determine if prolonged high fat diet or age suppress diet induced thermogenesis.
ContributorsJayo, Heather Lynn (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the

The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the bacterial community and the polysaccharide matrix presented by biofilms. The purpose of this investigation is to determine how exposure times in the order of weeks to months affect the MBEC. Using an in vitro approach, Staphylococcus aureus (UAMS-1) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms were produced with a 24 hour growth time and exposed to two antimicrobials, tobramycin and vancomycin, and one combination treatment that consisted of 1:1 tobramycin: vancomycin by weight. Crystal violet screening was used in order to ensure the integrity of the biofilm matrix throughout the full time of exposure. It was determined that UAMS-1 MBECs were lowered after 56 days of exposure than after 5 days for all three treatment groups. MRSA MBECs after 5 days of exposure decreased only with in vancomycin treatment group.
ContributorsSteinhauff, Douglas Busch (Author) / Caplan, Michael (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Materials Science and Engineering Program (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168457-Thumbnail Image.png
Description
Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of

Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of the adult brain presumably to reduce damage. The subventricular zone (SVZ) niche contains neural progenitor cells (NPCs) that generate astrocytes, oligodendrocyte, and neuroblasts. Following TBI, the injury microenvironment secretes signaling molecules like stromal cell derived factor-1a (SDF-1a). SDF-1a gradients from the injury contribute to the redirection of neuroblasts from the SVZ towards the lesion which may differentiate into neurons and integrate into existing circuitry. This repair mechanism is transient and does not lead to complete recovery of damaged tissue. Further, the mechanism by which SDF-1a gradients reach SVZ cells is not fully understood. To prolong NPC recruitment to the injured brain, exogenous SDF-1a delivery strategies have been employed. Increases in cell recruitment following stroke, spinal cord injury, and TBI have been demonstrated following SDF-1a delivery. Exogenous delivery of SDF-1a is limited by its 28-minute half-life and clearance from the injury microenvironment. Biomaterials-based delivery improves stability of molecules like SDF-1a and offer control of its release. This dissertation investigates SDF-1a delivery strategies for neural regeneration in three ways: 1) elucidating the mechanisms of spatiotemporal SDF-1a signaling across the brain, 2) developing a tunable biomaterials system for SDF-1a delivery to the brain, 3) investigating SDF-1a delivery on SVZ-derived cell migration following TBI. Using in vitro, in vivo, and in silico analyses, autocrine/paracrine signaling was necessary to produce SDF-1a gradients in the brain. Native cell types engaged in autocrine/paracrine signaling. A microfluidics device generated injectable hyaluronic-based microgels that released SDF-1a peptide via enzymatic cleavage. Microgels (±SDF-1a peptide) were injected 7 days post-TBI in a mouse model and evaluated for NPC migration 7 days later using immunohistochemistry. Initial staining suggested complex presence of astrocytes, NPCs, and neuroblasts throughout the frontoparietal cortex. Advancement of chemokine delivery was demonstrated by uncovering endogenous chemokine propagation in the brain, generating new approaches to maximize chemokine-based neural regeneration.
ContributorsHickey, Kassondra (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Holloway, Julianne (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021