Matching Items (6)
Filtering by

Clear all filters

149777-Thumbnail Image.png
Description
Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of

Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of pre-meal almond consumption on energy intake and weight in overweight and obese adults. In this study included 21, overweight or obese, participants who were considered healthy or had a controlled disease state. This 8-week parallel arm study, participants were randomized to consume an isocaloric amount of almonds, (1 oz) serving, or two (2 oz) cheese stick serving, 30 minutes before the dinner meal, 5 times per week. Anthropometric measurements including weight, waist circumference, and body fat percentage were recorded at baseline, week 1, 4, and 8. Measurement of energy intake was self-reported for two consecutive days at week 1, 4 and 8 using the ASA24 automated dietary program. The energy intake after 8 weeks of almond consumption was not significantly different when compared to the control group (p=0.965). In addition, body weight was not significantly reduced after 8 weeks of the almond intervention (p=0.562). Other parameters measured in this 8-week trial did not differ between the intervention and the control group. These data presented are underpowered and therefore inconclusive on the effects that 1 oz of almonds, in the diet, 5 per week has on energy intake and bodyweight.
ContributorsMcBride, Lindsey (Author) / Johnston, Carol (Thesis advisor) / Swan, Pamela (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
157079-Thumbnail Image.png
Description
Objectives: To investigate the potential of vinegar supplementation as a means for reducing visceral fat in healthy overweight and obese adults, and to evaluate its effects on fasting blood glucose and fasting insulin.

Subjects and Methods: Forty-five sedentary overweight and obese adult participants with a waist circumference greater than 32

Objectives: To investigate the potential of vinegar supplementation as a means for reducing visceral fat in healthy overweight and obese adults, and to evaluate its effects on fasting blood glucose and fasting insulin.

Subjects and Methods: Forty-five sedentary overweight and obese adult participants with a waist circumference greater than 32 inches for women and 37 inches for men were randomly assigned to one of two groups, the vinegar group (VIN, n=21) or the control group (CON, n=24), and instructed to consume either two tablespoons of liquid red wine vinegar (3.6g acetic acid) or a control pill (0.0225g acetic acid) twice daily at the beginning of a meal for 8 weeks. Participants were also instructed to maintain normal diet and physical activity levels. Anthropometric measures, dual-energy x-ray absorptiometry (DXA) scans, blood samples, and 24-hour dietary recalls were collected at baseline and at end of trial. A compliance calendar was provided for daily tracking of vinegar supplementation.

Results: Compliance to vinegar supplementation averaged 92.7 ±13.3% among the VIN group and 89.1 ±18.9% among the CON group. There were no statistically significant differences in anthropometric measurements between baseline and week 8: weight (P=0.694), BMI (P=0.879), and waist circumference (P=0.871). Similarly, DXA scan data did not show significant changes in visceral fat (P=0.339) or total fat (P=0.294) between baseline and week 8. The VIN group had significant reductions in fasting glucose (P=0.003), fasting insulin (P <0.001), and homeostatic model assessment of insulin resistance scores (P <0.001) after treatment.

Conclusions: These data do not support the findings from previous studies that indicated a link between vinegar supplementation and increased fat metabolism, specifically visceral fat reduction.
ContributorsGonzalez, Lisa Ann (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / McCoy, Maureen (Committee member) / Arizona State University (Publisher)
Created2019
134744-Thumbnail Image.png
Description
It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of

It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of low-fat to high-fat diet. Exogenous norepinephrine (NE) injections (dose of 0.25 mg/kg i.p.) were administered in order to elicit a temperature response, where increases in temperature indicate increased activity. Temperatures were measured via temperature sensing transponders that had been inserted at the following three sites: interscapular BAT (iBAT), the abdomen (core), and lower back (reference). Data showed increased BAT activity during acute (2-3 weeks) high fat diet (HFD) in comparison to low fat diet (LFD), but a moderate to marked decrease in BAT activity during chronic HFD (6-8 weeks) when compared to acute HFD. This suggests that while a HFD may initially stimulate BAT in the short-term, a long-term HFD diet may have negative effects on BAT activation.
ContributorsSivak, Hanna (Author) / Sweazea, Karen (Thesis director) / Herman, Richard (Committee member) / Caplan, Michael (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155258-Thumbnail Image.png
Description
Background: Acetic acid in vinegar has demonstrated antiglycemic effects in previous studies; however, the mechanism is unknown.

Objective: To determine whether acetic acid dissociates in the addition of sodium chloride and describe a flavorful vinaigrette that maintains the functional properties of acetic acid.

Design: Phase I - Ten healthy subjects

Background: Acetic acid in vinegar has demonstrated antiglycemic effects in previous studies; however, the mechanism is unknown.

Objective: To determine whether acetic acid dissociates in the addition of sodium chloride and describe a flavorful vinaigrette that maintains the functional properties of acetic acid.

Design: Phase I - Ten healthy subjects (23-40 years) taste tested five homemade vinaigrette and five commercial dressings. Perceived saltiness, sweetness, tartness, and overall tasted were scored using a modified labeled affective magnitude scale. Each dressing was tested three times for pH with a calibrated meter. Phase II – Randomized crossover trial testing six dressings against a control dressing two groups of nine healthy adult subjects (18-52 years). Height, weight and calculated body mass index (BMI) were performed at baseline. Subjects participated in four test sessions each, at least seven days apart. After a 10-hour fast, participants consumed 38g of the test drink, followed by a bagel meal. Capillary blood glucose was obtained at fasting, and every 30 minutes over a 2-hour period the test meal.

Results: Dressing pH reduced as sodium content increased. In the intervention trials, no significant differences were observed between groups (p >0.05). The greatest reduction in postprandial glycemia (~21%) was observed in the dressing containing 200 mg of sodium. Effect size was large in both group 1 (η2=0.161) and group 2 (η2=0.577).

Conclusion: The inclusion of sodium into acetic acid may impair its ability to attenuate blood glucose after a meal.
ContributorsBonsall, Amber K (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
155582-Thumbnail Image.png
Description
Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over

Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over design with participants serving as their own control. Eight glucose tolerant healthy participants completed the full study. Three-weeks washout period was kept in between six-weeks. Prior to the test meal day, participants were asked to eat a bagel with their evening dinner. During the day of the test meal, participants reported to the test site in a rested and fasted state. Participants completed mashed potato meal tests with 500 mg of turmeric powder or placebo mixed in water, followed by 3 weeks of 500 mg turmeric or placebo supplement ingestion at home. During this visit blood glucose finger picks were obtained at fasting, 30, 60, 90, and 120 min post-meal. Blood plasma insulin at fasting and at 30 min after the test meal were also obtained. During week 4, participants reported to the test site in a rested and fasted state where fasting blood glucose finger pricks and blood plasma insulin were measured. During week 5 to 7, participants were given a washout time-period. During week 8, entire process from week 1 to 4 was repeated by interchanging the groups. Compared to placebo, reduction in postprandial blood glucose and insulin response were non-significant after ingestion of turmeric powder. Taking turmeric for 3 weeks had no change in blood glucose and insulin levels. However, taking turmeric powder supplements for 3 weeks, showed a 4.4% reduction in blood glucose. Change in insulin at 30 min were compared with baseline insulin level showing no significant change between placebo and turmeric group. Fasting insulin after 3-weeks consumption of turmeric did not show any significant change, but showed a larger effect size (0.08). Future research is essential to examine the turmeric powder supplement benefits over a long period of time in healthy adults and whether it is beneficial in preventing the occurrence of type 2 diabetes.
ContributorsOza, Namrata (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
137668-Thumbnail Image.png
Description
Obesity is now an epidemic in the United States and scientists must work to approach it from a unique angle. The focus of my thesis is the application of brown adipose tissue as a combatant for fat loss in the body. Unused as adults, brown adipose tissue increases metabolism and

Obesity is now an epidemic in the United States and scientists must work to approach it from a unique angle. The focus of my thesis is the application of brown adipose tissue as a combatant for fat loss in the body. Unused as adults, brown adipose tissue increases metabolism and mitochondrial function to burn more fat in individuals that cannot lose weight conventionally. Current research works to introduce safe hormonal pathways in the sympathetic nervous system to generate more of this tissue.
ContributorsGrade, Neenah Young (Author) / Morse, Lisa (Thesis director) / Appel, Christy (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05