Matching Items (8)

134479-Thumbnail Image.png

Comparison of Inflammatory Changes in Ethmoid Mucosa and Nasal Turbinate Tissue: A Histopathological Study

Description

Abstract:
Background: Chronic rhinosinusitis (CRS) is defined as symptomatic inflammation of the nose and paranasal sinuses lasting more than 12 weeks. Persistent inflammation is thought to originate from multiple factors

Abstract:
Background: Chronic rhinosinusitis (CRS) is defined as symptomatic inflammation of the nose and paranasal sinuses lasting more than 12 weeks. Persistent inflammation is thought to originate from multiple factors including host physical and innate barrier defects and the exposure of the sinonasal mucosa to exogenous microorganisms. Regional differences in the innate host defense molecules present in nasal and sinus tissue have been recently reported. Thus, a histopathological study was conducted by Lal et al. to compare inflammatory changes in the ethmoid sinus mucosa and nasal turbinate tissue for CRS patients and controls. The objective of this work was to interpret the histopathological data from an immunobiological perspective and describe the significance of the results within the context of current scientific literature.
Methods: Tissue samples were collected from sinonasal surgery patients in three specific regions: ethmoid cells ± uncinate process (EC) in all patients and the inferior (IT) or middle turbinate (MT). EC and IT/MT samples were compared using Cohen’s kappa coefficient to measure agreement based on overall severity of inflammation, eosinophil count per high power field, and the predominant inflammatory cell infiltrate. The results of this study were compared with the current cohort of scientific literature regarding CRS pathogenesis. Both previous and current hypotheses were considered to construct a holistic overview of the development of the current understanding of CRS.
Results: The histopathology study determined that regional differences in degree and type of inflammation may be present in the nose and paranasal cavity. These findings support the current understanding of CRS as an inflammatory disease that is likely mediated by both host and environmental factors.
Conclusions: The histopathology study supports the current cohort of CRS research and provides evidence in support of the involvement of host factors in CRS pathogenesis.

Contributors

Agent

Created

Date Created
  • 2017-05

134816-Thumbnail Image.png

Effects of Environmental Conditions on Pyocyanin Production in Pseudomonas aeruginosa

Description

Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis

Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis (CF). Then, as lung infections become chronic, P. aeruginosa tends to down-regulate pyocyanin production. The effects of environmental conditions, particularly temperature change, on pyocyanin production in P. aeruginosa has not been widely studied in the past. The goals of this project were twofold: First, we aim to identify how environmental conditions potentially present in the CF lungs affect pyocyanin pigment production in P. aeruginosa. Second, through the examination of effects of environmental changes, we aim to identify methods to modulate phenotypes of P. aeruginosa in order to identify putative biomarkers through metabolic analysis. This paper also identifies a newly derived pyocyanin culturing and extraction procedure that yields increased sensitivity for pyocyanin detection.
Through a liquid-liquid extraction procedure, pyocyanin was quantified in cultures that were incubated at 30°C, 37°C, and 40°C and in the presence of Staphylococcus aureus spent media. In addition, culturing methods for the measurement of pyocyanin under hypoxic conditions were analyzed. I hypothesized that environmental conditions such as temperature, co-infection with S. aureus, and oxygen depletion would influence pyocyanin production. It was found that overall, 30°C incubation produced statistically significant decrease in pyocyanin production compared with incubation at 37°C. These findings will help to determine how phenotypes are affected by conditions in the CF lung. In addition, these conclusions will help direct metabolic analysis and to identify volatile biomarkers of pyocyanin production for future use in breath-based diagnostics of CF lung infections.

Contributors

Agent

Created

Date Created
  • 2016-12

133571-Thumbnail Image.png

Genetic Manipulation of Pseudomonas aeruginosa Clinical Isolates

Description

Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections,

Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections, P. aeruginosa populations adapt genetically to the CF lung, selecting several important mutations required for long-term persistence. These genetic adaptations lead to phenotypic changes that are associated with the transition from early-stage to late-stage chronic CF infection.
The goal of this project was to develop tools for gene transfer between P. aeruginosa clinical isolates. These tools will allow shuffling of early/late stage of infection genes to restore wild-type phenotypes in late chronic infection isolates and create single-phenotype mutants in the early infection strains. This will allow isolation and investigation of single phenotypes in the clinical isolates to identify metabolic biomarkers specifically for detecting the target phenotypes.

The gene transfer mechanisms of transformation by electroporation, transformation by heat shock, and conjugation were tested using the plasmid pMQ30 with a construct to create an in-frame deletion of the rhlR gene (rhlR) via allelic exchange. The disruption of the P. aeruginosa wild-type rhlR gene leads to rhamnolipids-deficient mutant strains; therefore, rhamnolipids production was assessed to validate successful in-frame deletion of the rhlR gene in the P. aeruginosa clinical isolates and laboratory strains. Based on the efficiencies determined from the gene transfer mechanisms tested, the conjugation mechanism was determined to be the most efficient method for gene transfer in P. aeruginosa laboratory strains, and was used to investigate gene transfer in the P. aeruginosa clinical isolates.

Contributors

Agent

Created

Date Created
  • 2018-05

541-Thumbnail Image.png

Cystic Fibrosis Education for School Personnel

Description

Aim: The purpose of this project was to determine if educating elementary school personnel would improve their knowledge and self-efficacy in caring for students with Cystic Fibrosis (CF) and improve the

Aim: The purpose of this project was to determine if educating elementary school personnel would improve their knowledge and self-efficacy in caring for students with Cystic Fibrosis (CF) and improve the health and educational outcomes of students with this disease.

Background: Evidence suggests that teachers play a big role in the management of students with chronic illnesses. However, current literature indicates that teachers lack basic knowledge about childhood chronic illnesses and how to manage students with chronic illnesses. Synthesis of evidence indicated that an online CF educational intervention would improve knowledge and self-efficacy among school personnel, thereby improving the health and educational outcomes of students with CF.

Methods: Elementary school personnel in Southern Arizona were asked to do an online pre-survey to evaluate knowledge and self-efficacy, view a short presentation on cystic fibrosis, and complete a post-survey. Parents of students with CF were asked to track 504 plan use and CF related absences. Frequencies were used to evaluate participant demographic data and survey data. The McNemar and Wilcoxon Signed Test were used to analyze survey data.

Results: Analysis showed a statistically significant improvement in perceived knowledge (p = .024) and self-efficacy scores (p = .034). Although survey scores showed an average score improvement between pre-survey and post-survey total scores (p = .212), it was not statistically significant.

Conclusion: Results showed an overall improvement in CF knowledge and self-efficacy among elementary school personnel. These results may provide an opportunity for CF healthcare providers and schools to promote the health and education of students with CF.

Contributors

Agent

Created

Date Created
  • 2016-05-06

132863-Thumbnail Image.png

The Effects of Staphylococcus aureus on Quorum-regulated Phenotypes in Pseudomonas aeruginosa

Description

Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated

Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated with worsened clinical outcomes in CF patients, and unknown still are the mechanisms that cause an increase in patient morbidity and mortality. Studying the interactions between P. aeruginosa and S. aureus is difficult because when co-cultured in vitro, P. aeruginosa drastically outcompetes and eradicates S. aureus cultures. This study explores methods for growing planktonic co-cultures of P. aeruginosa and S. aureus to stationary phase in equal proportions, and this will allow for the examination of changes in quorum-regulated phenotypes.

We grew liquid co-cultures of P. aeruginosa and S. aureus in LB Lennox media and examined their absolute and relative cell densities by plating the co-cultures on selective media. We evaluated the influence of oxygen concentration and co-inoculation vs. staggered inoculation on the ability to achieve a co-cultures with two P. aeruginosa (PA) and two S. aureus (SA) strains. The method that consistently produced PA:SA ratios in the range of 1:1 to 1:100 was to allow a SA mono-culture to reach stationary phase, and then re-suspend the SA cells in fresh media before inoculating with PA. With this method, it is possible to grow both PA and SA to stationary phase, a necessity for studying how PA and SA alter phenotypes in the presence of one another.

P. aeruginosa was found to produce less pyocyanin in the presence of S. aureus, but reduction in pyocyanin expression was depended on the strain of S. aureus. Elastase production differed between the two P. aeruginosa strains as well as between the two S. aureus strains, one increasing and one decreasing in expression. This data indicates that the responses of P. aeruginosa to S. aureus differ depending on both the P. aeruginosa and S. aureus strain present.

Contributors

Agent

Created

Date Created
  • 2019-05

153238-Thumbnail Image.png

Effect of oxygen on the competition between Pseudomonas aeruginosa and Staphylococcus aureus

Description

The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms

The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms chronically infecting the airways of CF patients, typically localize in hypoxic regions of the mucus. While interspecies interactions between P. aeruginosa and S. aureus have been reported, little is known about the role of low oxygen in regulating these interactions. Studying interspecies interactions in CF lung disease is important as evidence suggests that microbial community composition governs disease progression. In this study, P. aeruginosa lab strain PAO1 and two primary clinical isolates from hypoxic tissues were cultured alone, or in combination, with methicillin resistant S. aureus (MRSA) strain N315 under hypoxic or normoxic conditions. Herein, it is shown for the first time that low oxygen conditions relevant to the CF lung affect the competitive behavior between P. aeruginosa and S. aureus. Specifically, S. aureus was able to better survive competition in hypoxic versus normoxic conditions. Competition data from different oxygen concentrations were consistent using PAO1 and clinical isolates even though differences in the level of competition were observed. PAO1 strains carrying mutations in virulence factors known to contribute to S. aureus competition (pyocyanin/phzS, elastase/lasA and lasI quorum sensing/lasI) were used to determine which genes play a role in the differential growth inhibition. The lasA and lasI mutants competed less effectively with S. aureus regardless of the oxygen level present in the culture compared to the isogenic wild type strain. These results are consistent with previous findings that elastase and lasI quorum sensing play a role in competitive behavior of P. aeruginosa and S. aureus. Interestingly, the phzS mutant competed less effectively in hypoxic conditions suggesting that pyocyanin may be important in microaerophilic conditions. This study demonstrates that oxygen plays a role in competition between P. aeruginosa and S. aureus and contributes to understanding CF environmental factors that may regulate microbial community dynamics important for disease progression with potential for development of therapeutic avenues.

Contributors

Agent

Created

Date Created
  • 2014

157209-Thumbnail Image.png

Gut microbiome diversity and community structure following dietary genistein treatment in a murine model of cystic fibrosis

Description

Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant

Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation and microbial dysbiosis, most notably in the lungs and gastrointestinal (GI) tract. Genistein, a soy isoflavone and dietary polyphenol, has been shown to modulate CFTR function in cell cultures and murine models, as well exert sex-dependent improvement of survival rates in a CF mouse model. However, it is unknown whether dietary genistein affects gut microbiome diversity and community structure in cystic fibrosis. This study sought to examine associations between dietary genistein treatment and gut microbiome diversity and community structure in a murine model of CF. Methods: Twenty-four male and female mice homozygous for the DF508 CFTR gene mutation were maintained on one of three diet regimens for a 45-day period (n=11, standard chow; n=7, Colyte-treated water and standard chow; n=6, 600 mg dietary genistein per kg body weight). One fecal pellet was collected per mouse post-treatment, and microbial genomic DNA was extracted from the fecal samples, quantified, amplified, and sequenced on the Illumina MiSeq platform. QIIME 2 was used to conduct alpha- and beta-diversity analyses on all samples. Results: Measures of alpha-diversity were significantly decreased in the dietary genistein group as compared to either standard chow or Colyte groups. Measures of beta-diversity showed that community structure differed significantly between dietary treatment groups; these differences were further illustrated by distinct clustering of taxa as shown by principal coordinates analysis plots. Conclusion: This 3-arm parallel experimental study showed that dietary genistein treatment was associated with decreased microbial diversity and differences in microbial community structure in DF508 mice.

Contributors

Agent

Created

Date Created
  • 2019

149453-Thumbnail Image.png

An investigation of academic achievement and achievement motivation in children with cystic fibrosis

Description

Cystic Fibrosis, one of the most severe childhood life-shortening illnesses, places demands on a child's life conceivably interfering with his or her academic success. It is possible that the medically

Cystic Fibrosis, one of the most severe childhood life-shortening illnesses, places demands on a child's life conceivably interfering with his or her academic success. It is possible that the medically related activities in which individuals with CF partake interfere with academic activities and the motivation, specifically beliefs, expectancies, and values held, toward those activities. These issues encouraged the investigation of academic achievement and achievement motivation in children with CF through exploration of three research questions. Question one concerns differences in academic achievement between children with CF and a healthy comparison group for 1) reading and 2) math. Question two explored differences in aspects of motivation including ability beliefs, outcome expectancies, and task values between the groups for the two academic subjects. Finally, question three examined the relationship between motivational components and academic achievement. Evidence is provided for differences in math achievement between the two groups. Differences in motivation between children with CF and healthy children remain unsubstantiated.

Contributors

Agent

Created

Date Created
  • 2010