Matching Items (63)
Filtering by
- All Subjects: Computer Science
- Creators: Sen, Arunabha
- Resource Type: Text

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal with internal interference without the exact knowledge on the number of participants in the network, but they are also robust to unintentional or intentional external interference, e.g., due to co-existing networks or jammers. We model the external interference by a powerful adaptive and/or reactive adversary which can jam a (1 − ε)-portion of the time steps, where 0 < ε ≤ 1 is an arbitrary constant. We allow the adversary to be adaptive and to have complete knowledge of the entire protocol history. Moreover, in case the adversary is also reactive, it uses carrier sensing to make informed decisions to disrupt communications. Among the proposed protocols, JADE, ANTIJAM and COMAC are able to achieve Θ(1)-competitive throughput with the presence of the strong adversary; while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Interference plus Noise Ratio), in robust medium access protocols design; the derived principles are also useful to build applications on top of the MAC layer, and we present SELECT, which is an exemplary study for leader election, which is one of the most fundamental tasks in distributed computing.

Analysis of political texts, which contains a huge amount of personal political opinions, sentiments, and emotions towards powerful individuals, leaders, organizations, and a large number of people, is an interesting task, which can lead to discover interesting interactions between the political parties and people. Recently, political blogosphere plays an increasingly important role in politics, as a forum for debating political issues. Most of the political weblogs are biased towards their political parties, and they generally express their sentiments towards their issues (i.e. leaders, topics etc.,) and also towards issues of the opposing parties. In this thesis, I have modeled the above interactions/debate as a sentimental bi-partite graph, a bi-partite graph with Blogs forming vertices of a disjoint set, and the issues (i.e. leaders, topics etc.,) forming the other disjoint set,and the edges between the two sets representing the sentiment of the blogs towards the issues. I have used American Political blog data to model the sentimental bi- partite graph, in particular, a set of popular political liberal and conservative blogs that have clearly declared positions. These blogs contain discussion about social, political, economic issues and related key individuals in their conservative/liberal view. To be more focused and more polarized, 22 most popular liberal/conservative blogs of a particular time period, May 2008 - October 2008(because of high intensity of debate and discussions), just before the presidential elections, was considered, involving around 23,800 articles. This thesis involves solving the questions: a) which is the most liberal/conservative blogs on the web? b) Who is on which side of debate and what are the issues? c) Who are the important leaders? d) How do you model the relationship between the participants of the debate and the underlying issues?

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.
In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.
I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.
US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).
The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.
In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.

Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure, operation (including control and management), evolution over time, and that people are involved in their design and operation. Our understanding of such systems is limited because their behaviour cannot be characterized using traditional techniques of modelling and analysis.
As a step in model development, statistically designed screening experiments may be used to identify the main effects and interactions most significant on a response of a system. However, traditional approaches for screening are ineffective for complex systems because of the size of the experimental design. Consequently, the factors considered are often restricted, but this automatically restricts the interactions that may be identified as well. Alternatively, the designs are restricted to only identify main effects, but this then fails to consider any possible interactions of the factors.
To address this problem, a specific combinatorial design termed a locating array is proposed as a screening design for complex systems. Locating arrays exhibit logarithmic growth in the number of factors because their focus is on identification rather than on measurement. This makes practical the consideration of an order of magnitude more factors in experimentation than traditional screening designs.
As a proof-of-concept, a locating array is applied to screen for main effects and low-order interactions on the response of average transport control protocol (TCP) throughput in a simulation model of a mobile ad hoc network (MANET). A MANET is a collection of mobile wireless nodes that self-organize without the aid of any centralized control or fixed infrastructure. The full-factorial design for the MANET considered is infeasible (with over 10^{43} design points) yet a locating array has only 421 design points.
In conjunction with the locating array, a ``heavy hitters'' algorithm is developed to identify the influential main effects and two-way interactions, correcting for the non-normal distribution of the average throughput, and uneven coverage of terms in the locating array. The significance of the identified main effects and interactions is validated independently using the statistical software JMP.
The statistical characteristics used to evaluate traditional screening designs are also applied to locating arrays.
These include the matrix of covariance, fraction of design space, and aliasing, among others. The results lend additional support to the use of locating arrays as screening designs.
The use of locating arrays as screening designs for complex engineered systems is promising as they yield useful models. This facilitates quantitative evaluation of architectures and protocols and contributes to our understanding of complex engineered networks.

A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms to tackle this problem.
Besides the common feature above, communities within a social network have two unique characteristics: communities are mostly small and overlapping. Unfortunately, many traditional algorithms have difficulty recognizing these small communities (often called the resolution limit problem) as well as overlapping communities.
In this work, two enhanced community detection techniques are proposed for re-working existing community detection algorithms to find small communities in social networks. One method is to modify the modularity measure within the framework of the traditional Newman-Girvan algorithm so that more small communities can be detected. The second method is to incorporate a preprocessing step into existing algorithms by changing edge weights inside communities. Both methods help improve community detection performance while maintaining or improving computational efficiency.

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.
The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.
The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process.
Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have been proposed and analyzed in the last few years. However, most of these models are over-simplified and fail to capture the complex interdependencies that may exist between critical infrastructures. To overcome the limitations of existing models, this dissertation presents a new model -- the Implicative Interdependency Model (IIM) that is able to capture such complex interdependency relations. As the potential for a failure cascade in critical interdependent networks poses several risks that can jeopardize the nation, this dissertation explores relevant research problems in the interdependent power and communication networks using the proposed IIM and lays the foundations for further study using this model.
Apart from exploring problems in interdependent critical infrastructures, this dissertation also explores resource allocation techniques for environments enabled with cyber-physical systems. Specifically, the problem of efficient path planning for data collection using mobile cyber-physical systems is explored. Two such environments are considered: a Radio-Frequency IDentification (RFID) environment with mobile “Tags” and “Readers”, and a sensor data collection environment where both the sensors and the data mules (data collectors) are mobile.
Finally, from an applied research perspective, this dissertation presents Raptor, an advanced network planning and management tool for mitigating the impact of spatially correlated, or region based faults on infrastructure networks. Raptor consolidates a wide range of studies conducted in the last few years on region based faults, and provides an interface for network planners, designers and operators to use the results of these studies for designing robust and resilient networks in the presence of spatially correlated faults.