Matching Items (62)
Filtering by

Clear all filters

157741-Thumbnail Image.png
Description
Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi

Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi level reasoning and combining independent pieces of knowledge, for example, a question like "What adaptation is necessary in intertidal ecosystems but not in reef ecosystems?'', requires the system to consider qualities, behaviour or features of an organism living in an intertidal ecosystem and compare with that of an organism in a reef ecosystem to find the answer. The proposed solution is to solve a genre of questions, which is questions based on "Adaptation, Variation and Behavior in Organisms", where there are various different independent sets of knowledge required for answering questions along with reasoning. This method is implemented using Answer Set Programming and Natural Language Inference (which is based on machine learning ) for finding which of the given options is more probable to be the answer by matching it with the knowledge base. To evaluate this approach, a dataset of questions and a knowledge base in the domain of "Adaptation, Variation and Behavior in Organisms" is created.
ContributorsBatni, Vaishnavi (Author) / Baral, Chitta (Thesis advisor) / Anwar, Saadat (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
157745-Thumbnail Image.png
Description
Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects

Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text.

As part of this work, an attempt is made to address the ProPara challenge. The Knowledge Representation and Reasoning (KRR) community has developed effective techniques for modeling and reasoning about actions and similar techniques are used in this work. A system consisting of Inductive Logic Programming (ILP) and Answer Set Programming (ASP) is used to address the challenge and achieves close to state-of-the-art results and provides an explainable model. An existing semantic role label parser is modified and used to parse the dataset.

On analysis of the learnt model, it was found that some of the rules were not generic enough. To overcome the issue, the Proposition Bank dataset is then used to add knowledge in an attempt to generalize the ILP learnt rules to possibly improve the results.
ContributorsBhattacharjee, Aurgho (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2019
157990-Thumbnail Image.png
Description
As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do.

As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do.

The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, conditions and avoidance. That is, the following general questions are addressed:

* What cause of the given mission is unrealizable?

* Is there any other feasible mission that is close to the given one?

In order to answer these questions, the LTL Revision Problem is applied and it is formulated as a graph search problem. It is shown that in general the problem is NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation bound in some cases. This problem, then, is extended to two different versions: one is for the weighted transition system and another is for the specification under quantitative preference. Next, a follow up question is addressed:

* How can an LTL specified mission be scaled up to multiple robots operating in confined environments?

The Cooperative Multi-agent Planning Problem is addressed by borrowing a technique from cooperative pathfinding problems in discrete grid environments. Since centralized planning for multi-robot systems is computationally challenging and easily results in state space explosion, a distributed planning approach is provided through agent coupling and de-coupling.

In addition, in order to make such robot missions work in the real world, robots should take actions in the continuous physical world. Hence, in the second part of this thesis, the resulting motion planning problems is addressed for non-holonomic robots.

That is, it is devoted to autonomous vehicles’ motion planning in challenging environments such as rural, semi-structured roads. This planning problem is solved with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is also proved that the proposed algorithm guarantees resolution-completeness in such demanding environments. Finally, possible extensions are discussed.
ContributorsKim, Kangjin (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Lee, Joohyung (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2019
158461-Thumbnail Image.png
Description
Information Retrieval (IR) is the task of obtaining pieces of data (such as documents or snippets of text) that are relevant to a particular query or need from a large repository of information. IR is a valuable component of several downstream Natural Language Processing (NLP) tasks, such as

Information Retrieval (IR) is the task of obtaining pieces of data (such as documents or snippets of text) that are relevant to a particular query or need from a large repository of information. IR is a valuable component of several downstream Natural Language Processing (NLP) tasks, such as Question Answering. Practically, IR is at the heart of many widely-used technologies like search engines.

While probabilistic ranking functions, such as the Okapi BM25 function, have been utilized in IR systems since the 1970's, modern neural approaches pose certain advantages compared to their classical counterparts. In particular, the release of BERT (Bidirectional Encoder Representations from Transformers) has had a significant impact in the NLP community by demonstrating how the use of a Masked Language Model (MLM) trained on a considerable corpus of data can improve a variety of downstream NLP tasks, including sentence classification and passage re-ranking.

IR Systems are also important in the biomedical and clinical domains. Given the continuously-increasing amount of scientific literature across biomedical domain, the ability find answers to specific clinical queries from a repository of millions of articles is a matter of practical value to medics, doctors, and other medical professionals. Moreover, there are domain-specific challenges present in the biomedical domain, including handling clinical jargon and evaluating the similarity or relatedness of various medical symptoms when determining the relevance between a query and a sentence.

This work presents contributions to several aspects of the Biomedical Semantic Information Retrieval domain. First, it introduces Multi-Perspective Sentence Relevance, a novel methodology of utilizing BERT-based models for contextual IR. The system is evaluated using the BioASQ Biomedical IR Challenge. Finally, practical contributions in the form of a live IR system for medics and a proposed challenge on the Living Systematic Review clinical task are provided.
ContributorsRawal, Samarth (Author) / Baral, Chitta (Thesis advisor) / Devarakonda, Murthy (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2020
158389-Thumbnail Image.png
Description
One of the measures to determine the intelligence of a system is through Question Answering, as it requires a system to comprehend a question and reason using its knowledge base to accurately answer it. Qualitative word problems are an important subset of such problems, as they require a system to

One of the measures to determine the intelligence of a system is through Question Answering, as it requires a system to comprehend a question and reason using its knowledge base to accurately answer it. Qualitative word problems are an important subset of such problems, as they require a system to recognize and reason with qualitative knowledge expressed in natural language. Traditional approaches in this domain include multiple modules to parse a given problem and to perform the required reasoning. Recent approaches involve using large pre-trained Language models like the Bidirection Encoder Representations from Transformers for downstream question answering tasks through supervision. These approaches however either suffer from errors between multiple modules, or are not interpretable with respect to the reasoning process employed. The proposed solution in this work aims to overcome these drawbacks through a single end-to-end trainable model that performs both the required parsing and reasoning. The parsing is achieved through an attention mechanism, whereas the reasoning is performed in vector space using soft logic operations. The model also enforces constraints in the form of auxiliary loss terms to increase the interpretability of the underlying reasoning process. The work achieves state of the art accuracy on the QuaRel dataset and matches that of the QuaRTz dataset with additional interpretability.
ContributorsNarayana, Sanjay (Author) / Baral, Chitta (Thesis advisor) / Mitra, Arindam (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2020
158555-Thumbnail Image.png
Description
Referring Expression Comprehension (REC) is an important area of research in Natural Language Processing (NLP) and vision domain. It involves locating an object in an image described by a natural language referring expression. This task requires information from both Natural Language and Vision aspect. The task is compositional in nature

Referring Expression Comprehension (REC) is an important area of research in Natural Language Processing (NLP) and vision domain. It involves locating an object in an image described by a natural language referring expression. This task requires information from both Natural Language and Vision aspect. The task is compositional in nature as it requires visual reasoning as underlying process along with relationships among the objects in the image. Recent works based on modular networks have

displayed to be an effective framework for performing visual reasoning task.

Although this approach is effective, it has been established that the current benchmark datasets for referring expression comprehension suffer from bias. Recent work on CLEVR-Ref+ dataset deals with bias issues by constructing a synthetic dataset

and provides an approach for the aforementioned task which performed better than the previous state-of-the-art models as well as showing the reasoning process. This work aims to improve the performance on CLEVR-Ref+ dataset and achieve comparable interpretability. In this work, the neural module network approach with the attention map technique is employed. The neural module network is composed of the primitive operation modules which are specific to their functions and the output is generated using a separate segmentation module. From empirical results, it is clear that this approach is performing significantly better than the current State-of-theart in one aspect (Predicted programs) and achieving comparable results for another aspect (Ground truth programs)
ContributorsRathor, Kuldeep Singh (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Simeone, Michael (Committee member) / Arizona State University (Publisher)
Created2020
158353-Thumbnail Image.png
Description
Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image

Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image memes are used in viral marketing and mass advertising to propagate any ideas ranging from simple commercials to those that can cause changes and development in the social structures like countering hate speech.

This work proposes to treat automatic image meme generation as a translation process, and further present an end to end neural and probabilistic approach to generate an image-based meme for any given sentence using an encoder-decoder architecture. For a given input sentence, a meme is generated by combining a meme template image and a text caption where the meme template image is selected from a set of popular candidates using a selection module and the meme caption is generated by an encoder-decoder model. An encoder is used to map the selected meme template and the input sentence into a meme embedding space and then a decoder is used to decode the meme caption from the meme embedding space. The generated natural language caption is conditioned on the input sentence and the selected meme template.

The model learns the dependencies between the meme captions and the meme template images and generates new memes using the learned dependencies. The quality of the generated captions and the generated memes is evaluated through both automated metrics and human evaluation. An experiment is designed to score how well the generated memes can represent popular tweets from Twitter conversations. Experiments on Twitter data show the efficacy of the model in generating memes capable of representing a sentence in online social interaction.
ContributorsSadasivam, Aadhavan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2020
161889-Thumbnail Image.png
Description
Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due to the increase in the number of databases to search

Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due to the increase in the number of databases to search and the papers being published. Hence, the automation of SRs is an essential task. The goal of this thesis work is to develop Natural Language Processing (NLP)-based classifiers to automate the title and abstract-based screening for clinical SRs based on inclusion/exclusion criteria. In clinical SRs, a high-sensitivity system is a key requirement. Most existing methods for SRs use binary classification systems trained on labeled data to predict inclusion/exclusion. While previous studies have shown that NLP-based classification methods can automate title and abstract-based screening for SRs, methods for achieving high-sensitivity have not been empirically studied. In addition, the training strategy for binary classification has several limitations: (1) it ignores the inclusion/exclusion criteria, (2) lacks generalization ability, (3) suffers from low resource data, and (4) fails to achieve reasonable precision at high-sensitivity levels. This thesis work presents contributions to several aspects of the clinical systematic review domain. First, it presents an empirical study of NLP-based supervised text classification and high-sensitivity methods on datasets developed from six different SRs in the clinical domain. Second, this thesis work provides a novel approach to view SR as a Question Answering (QA) problem in order to overcome the limitations of the binary classification training strategy; and propose a more general abstract screening model for different SRs. Finally, this work provides a new QA-based dataset for six different SRs which is made available to the community.
ContributorsParmar, Mihir Prafullsinh (Author) / Baral, Chitta (Thesis advisor) / Devarakonda, Murthy (Thesis advisor) / Riaz, Irbaz B (Committee member) / Arizona State University (Publisher)
Created2021
161838-Thumbnail Image.png
Description
Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress made in simple question tasks (e.g. object recognition), researchers

Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress made in simple question tasks (e.g. object recognition), researchers start to shift their interests to the questions that require knowledge and reasoning. Knowledge-based VQA requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowledge corpus for retrieval. Existing work leverages different knowledge bases (e.g., ConceptNet and Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is hard to fairly compare models' performance. To address this issue, this paper collects a natural language knowledge base that can be used for any question answering (QA) system. Moreover, a Visual Retriever-Reader pipeline is proposed to approach knowledge-based VQA, where the visual retriever aims to retrieve relevant knowledge, and the visual reader seeks to predict answers based on given knowledge. The retriever is constructed with two versions: term based retriever which uses best matching 25 (BM25), and neural based retriever where the latest dense passage retriever (DPR) is introduced. To encode the visual information, the image and caption are encoded separately in the two kinds of neural based retriever: Image-DPR and Caption-DPR. There are also two styles of readers, classification reader and extraction reader. Both the retriever and reader are trained with weak supervision. The experimental results show that a good retriever can significantly improve the reader's performance on the OK-VQA challenge.
ContributorsZeng, Yankai (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Ghayekhloo, Samira (Committee member) / Arizona State University (Publisher)
Created2021
161705-Thumbnail Image.png
Description
Reverse engineers use decompilers to analyze binaries when their source code is unavailable. A binary decompiler attempts to transform binary programs to their corresponding high-level source code by recovering and inferring the information that was lost during the compilation process. One type of information that is lost during compilation is

Reverse engineers use decompilers to analyze binaries when their source code is unavailable. A binary decompiler attempts to transform binary programs to their corresponding high-level source code by recovering and inferring the information that was lost during the compilation process. One type of information that is lost during compilation is variable names, which are critical for reverse engineers to analyze and understand programs. Traditional binary decompilers generally use automatically generated, placeholder variable names that are meaningless or have little correlation with their intended semantics. Having correct or meaningful variable names in decompiled code, instead of placeholder variable names, greatly increases the readability of decompiled binary code. Decompiled Identifier Renaming Engine (DIRE) is a state-of-the-art, deep-learning-based solution that automatically predicts variable names in decompiled binary code. However, DIRE's prediction result is far from perfect. The first goal of this research project is to take a close look at the current state-of-the-art solution for automated variable name prediction on decompilation output of binary code, assess the prediction quality, and understand how the prediction result can be improved. Then, as the second goal of this research project, I aim to improve the prediction quality of variable names. With a thorough understanding of DIRE's issues, I focus on improving the quality of training data. This thesis proposes a novel approach to improving the quality of the training data by normalizing variable names and converting their abbreviated forms to their full forms. I implemented and evaluated the proposed approach on a data set of over 10k and 20k binaries and showed improvements over DIRE.
ContributorsBajaj, Ati Priya (Author) / Wang, Ruoyu (Thesis advisor) / Baral, Chitta (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2021