Matching Items (1)
133940-Thumbnail Image.png
Description
Motion simulators are a common feature in everything from high end science museums to amusement parks, allowing a full ride experience on a small footprint and at a comparatively low cost relative to full size rides. The rapidly advancing field of virtual reality provides a potential increase in this desire

Motion simulators are a common feature in everything from high end science museums to amusement parks, allowing a full ride experience on a small footprint and at a comparatively low cost relative to full size rides. The rapidly advancing field of virtual reality provides a potential increase in this desire for motion simulators, by combing virtual reality with motion simulation, total immersions can be created that is competitive with theme parks. While there exists a small number of commercially available consumer motion simulators, these tend to not have a wide enough range of motion to provide flexibility for use cases. This report is the documentation of an attempt to create a low cost consumer grade motion simulator prototype to determine to what extent an adequate motion simulation experience can be created in the home environment. This design made use of a two degree of freedom platform mounted on a universal joint as a trade off between flexibility of use and affordability of the end product. Ultimately, although the design and motor selection was sound, structural issues prevented the design from being capable of withstanding the necessary forces. However, as a prototype, important lessons were learned that could apply to a better-constructed second generation design. The results definitely show that motion simulators will, in the near future, become feasible for in-home amusement park recreation, at least for some amusement park rides.
ContributorsMiller, Alec Michael (Author) / Sodemann, Angela (Thesis director) / Gintz, Jerry (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05