Matching Items (3)
Filtering by

Clear all filters

134768-Thumbnail Image.png
Description
This study was designed with the goal of measuring the effects of sleep deprivation on muscle function. Participants in this study consisted of 19 individuals, 11 of which were in the restricted group (age 251) and 8 were in the control group (age 231). Measurements of muscle function included isometric

This study was designed with the goal of measuring the effects of sleep deprivation on muscle function. Participants in this study consisted of 19 individuals, 11 of which were in the restricted group (age 251) and 8 were in the control group (age 231). Measurements of muscle function included isometric strength, isokinetic velocity, and muscle soreness. Isometric strength and isokinetic velocity were taken for knee extension using a dynamometer. Muscle soreness was measured via a 100mm likert visual analogue scale for the step-up and step-down movements with the effected leg. Measurements were taken at baseline, and 48 hours after the damaging bout of eccentric exercise following either 8 hours of sleep per night or 3 hours of sleep per night. Results show that there were no statistical differences between groups for either measurements of isometric strength, isokinetic velocity, or muscle soreness. Due to possible confounding factors, future research needs to be conducted in order to get a better understanding of the effects of sleep deprivation on muscle function.
ContributorsSalmeron-Been, Aaron James (Author) / Dickinson, Jared (Thesis director) / Youngstedt, Shawn (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
131940-Thumbnail Image.png
Description
Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are at an increased risk for cardiovascular disease, functional impairments, and

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are at an increased risk for cardiovascular disease, functional impairments, and loss of cardiorespiratory fitness. These negative outcomes have implications for early morbidity and mortality. The purpose of this thesis was to test the hypothesis that high-intensity exercise preconditioning (exercise commenced prior to initiating chemotherapy and continued throughout treatment cycles) preserves health-related outcomes in breast cancer patients treated with anthracycline-containing chemotherapy. Here, we present a subset of preliminary data from an ongoing trial (NCT02842658) that is focused on VO2peak and skeletal muscle outcomes from the first 10 participants that have enrolled in the trial. Breast cancer patients (N=10; 50 ± 11 y; 168 ± 4 cm; 92 ± 37 kg; 32.3 ± 12.3 kg/m2) scheduled to receive anthracycline-containing chemotherapy were randomly assigned to one of two interventions: 1) exercise preconditioning, (3 days per week of supervised exercise throughout treatment) or 2) standard of care (attention-control). Pre-testing occurred 1-2 week prior to chemotherapy. The interventions were initiated 1 week prior to chemotherapy and continued throughout anthracycline treatment. Post-testing occurred 3-7 days following the last anthracycline treatment. VO2peak (L/min) was reduced by 16% in the control group (P < 0.05), whereas VO2peak was preserved in the exercise preconditioning group. Trends for greater preservation and/or improvement in the exercise preconditioning group were also observed for lean body mass and peak heart rate. Hand grip strength was not changed in either group (P > 0.05). Both groups demonstrated an increase in ultrasound-derived echogenicity measures of the vastus lateralis (P < 0.05), indicating changes in the composition of the skeletal muscle during treatment. These preliminary data highlight that exercise preconditioning may serve as a strategy to preserve cardiorespiratory fitness and perhaps lean mass during anthracycline treatment of breast cancer. There remains a need for larger, definitive clinical trials to identify strategies to prevent the array of chemotherapy-induced toxicities that are observed in breast cancer patients treated with anthracyclines.
ContributorsCasey, Kathleen (Author) / Angadi, Siddhartha (Thesis director) / Gaesser, Glenn (Committee member) / Dickinson, Jared (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019