Matching Items (26)

132592-Thumbnail Image.png

Cancer Type Specific FrAmeShifT (FAST) Vaccine

Description

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point inhibitors (CPI), significantly slowed tumor growth, reduced pulmonary metastasis and increased the cell-mediated immune response. In terms of tumor volumes, the mPC FAST vaccine was comparable to the untreated controls. However, a significant difference in tumor volume did emerge when the mPC vaccine was used with CPI. The collective data indicated that the immune checkpoint blockade therapy was only beneficial with suboptimal neoantigens. More importantly, the FAST vaccine, though requiring notably less resources, performed similarly to the personalized version of the frameshift breast cancer vaccine in the same mouse model. Furthermore, because the frameshift peptide (FSP) array provided a strong rationale for a focused vaccine, the FAST vaccine can theoretically be expanded and translated to any human cancer type. Overall, the FAST vaccine is a promising treatment that would provide the most benefit to patients while eliminating most of the challenges associated with current personal cancer vaccines.

Contributors

Created

Date Created
  • 2019-05

132188-Thumbnail Image.png

UTILIZING A NOVEL 3D BREAST TUMOR MODEL TO STUDY COMBINATORIAL DRUG TREATMENT EFFICACY

Description

Stromal cells play an important role in facilitating disease progression of ductal carcinoma. Cancer associated fibroblasts (CAFs) are an important component of the extracellular matrix (ECM) which constitutes the microenvironment

Stromal cells play an important role in facilitating disease progression of ductal carcinoma. Cancer associated fibroblasts (CAFs) are an important component of the extracellular matrix (ECM) which constitutes the microenvironment of breast tumor cells. They are known to participate in chemotherapeutic drug resistance by modulating various biochemical and biophysical factors that contribute to increased matrix stiffness and collagen I density of the tumor-adjacent stroma. To address these issues in terms of patient treatment, anti-cancer drug regimes have been assembled to incorporate both chemotherapeutic as well as anti-fibrotic drugs to both target tumor cells while also diminishing the elastic modulus of the microenvironment by targeting CAFs. The quantitative assessment of these drug regimes on tumor progression is missing in terms of CAFs role alone.

A high density 3D tumor model was utilized to recapitulate the tumor microenvironment of ductal carcinoma in vitro. The tumor model consisted of MDA-MB-231 tumors seeded within micromolded collagen wells, chemically immobilized upon a surface treated PDMS substrate. CAFs were seeded within the greater collagen structure from which the microwells were formed. The combinatorial effect of anti-fibrotic drug (Tranilast) and chemotherapy drug (Doxorubicin) were studied within 3D co culture conditions. Specifically, the combinatorial effects of the drugs on tumor cell viability, proliferation, and invasion were examined dynamically upon coculture with CAFs using the microengineered model.

The results of the study showed that the combinatorial effects of Tranilast and Doxorubicin significantly decreased the proliferative ability of tumor cells, in addition to significantly decreasing the ability of tumor cells to remain viable and invade their surrounding stroma, compared to control conditions.

Contributors

Agent

Created

Date Created
  • 2019-05

134306-Thumbnail Image.png

Engineering 3D Breast Tumor Model for Studying Tumor Stromal Interactions

Description

The objective of this research was to create a 3D in vitro model to mimic the native breast tumor microenvironment. Polydimethylsiloxane (PDMS) stamps and micromolding techniques were utilized to develo

The objective of this research was to create a 3D in vitro model to mimic the native breast tumor microenvironment. Polydimethylsiloxane (PDMS) stamps and micromolding techniques were utilized to develop collagen based 3D tumor model. Geometrical design was optimized for the PDMS stamp to compartmentalize the tumor and stromal region of the 3D model. Addition of tumor and stromal cells into the platform further demonstrated the successful fabrication of the 3D model which will be used to investigate the role of stromal components on tumor growth and progression. Atomic force microscopy will also be utilized to access stromal remodeling during active invasion.

Contributors

Agent

Created

Date Created
  • 2017-05

134705-Thumbnail Image.png

Evaluation of Bexarotene and Novel RXR Agonists for the Treatment of Estrogen Receptor Alpha \u2014 Positive Breast Cancer

Description

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways.

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and can therefore be used to treat ERα-positive cancers, such as breast cancer. Using dual luciferase reporter assays, real-time qRT-PCR, and metabolic proliferation assays, the anti-estrogenic properties of Bex were ascertained. However, since Bex produces numerous contraindications, select novel RXR drug analogs were also evaluated. Results revealed that, in luciferase assays, Bex could significantly (P < 0.01) inhibit the transcriptional activity of ERα, so much so that it rivaled ER pan-antagonist ZK164015 in potency. Bex was also able to suppress the proliferation of two breast cancer cell models, MCF-7 and T-47D, and downregulate the expression of an estrogen receptor target gene (A-myb), which is responsible for cell proliferation. In addition, novel analogs A30, A33, A35, and A38 were evaluated as being more potent at inhibiting ERE-mediated transcription than Bex at lower concentrations. Analogs A34 and A35 were able to suppress MCF-7 cell proliferation to a degree comparable to that of Bex. Inhibition of T-47D cell proliferation, by contrast, was best achieved by analogs A34 and A36. For those with ERα – positive breast cancer who are refractory to current chemotherapeutics used to treat breast cancer, Bex and its analogs may prove to be useful alternative options.

Contributors

Agent

Created

Date Created
  • 2016-12

135062-Thumbnail Image.png

Understanding the Biochemistry of Different P53 Mutants Having Different Sensitivities to Simvastatin

Description

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.

Contributors

Agent

Created

Date Created
  • 2016-12

135202-Thumbnail Image.png

The Neuropsychological Effects of High-Intensity Interval Training on Breast Cancer Patients Undergoing Chemotherapy

Description

Past studies have shown that exercise in the form of high intensity interval training (HIIT) is the "ideal form of exercise to improve health and performance without overstressing the immune

Past studies have shown that exercise in the form of high intensity interval training (HIIT) is the "ideal form of exercise to improve health and performance without overstressing the immune system" (Fisher et. al, 2011, p. 5). Additionally, HIIT has been found to promote cardiovascular health and immunity (Fisher et. al, 2011). The proposed study will evaluate the neuropsychological effects of HIIT on breast cancer patients undergoing anthracycline-based chemotherapy. The intervention group (n = 17) will receive a HIIT protocol concurrent with chemotherapy treatment. There will also be a control group (n= 17) to compare the effects of the intervention. Breast cancer survivorship is often ridden with various health and mental problems, the implementation of HIIT procedures could help to reduce these issues. It is expected that knowledge from this study will be useful in the healthcare setting to benefit breast cancer patients. This study will uniquely add to the limited research base by introducing an intervention for neuropsychological declines in breast cancer patients.

Contributors

Agent

Created

Date Created
  • 2016-05

131342-Thumbnail Image.png

A Life History Model of Mammary Neoplasia Across Mammals

Description

Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of

Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. A comparison of cancer prevalence across the tree of life can give insight into how evolutionary history has shaped various mechanisms of cancer suppression. Here, we explore whether species-level life history strategies are associated with differences in mammary neoplasia rates across mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a phylogenetic regression on 15 life history traits across 112 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. A greater risk of mammary neoplasia was found in the characteristics associated with fast life history organisms and a lower risk of mammary neoplasia was found in the characteristics associated with slow life history organisms. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability.

Contributors

Agent

Created

Date Created
  • 2020-05

136935-Thumbnail Image.png

Alternative Treatments for Endocrine Resistant Breast Cancer

Description

The focus of this project was to look at alternative treatments for endocrine resistant breast cancer (ERBC), which are breast cancers that have become resistant to hormone therapies such as

The focus of this project was to look at alternative treatments for endocrine resistant breast cancer (ERBC), which are breast cancers that have become resistant to hormone therapies such as Tamoxifen or aromatase inhibitors. The first part of this project involves investigating the relationship between histone de-acetylase inhibitor Vorinostat and Tamoxifen in MCF7 G11 cells, Tamoxifen resistant sub-clones, according to the PSOC Time grant. The second part involves targeting the androgen receptor (AR) in MCF7 sub-clones with AR antagonists, Bicalutamide and MDV3100, and investigating the possible usage of AR as a biomarker, due to over-expression of AR in ERBC, in accordance with the Mayo ASU Seed Grant.
The synergistic effects between Vorinostat and Tamoxifen observed through a phase II study on breast cancer patients resistant to hormone therapy may involve more than the modulation of ER-alpha to reverse Tamoxifen resistance in ERBC cells. RT-qPCR of genes expressed in Tamoxifen resistant cells, trefoil factor 1(TFF1) and v-myc avian myelocytomatosis viral oncogene homolog (MYC), were evaluated along with ESR1 and Diablo as a control. MYC was observed to have increased expression in the treated cells, whereas the other genes had a decrease in their expression levels after the cells were treated for 3 days with Vorinostat IC30 of 1 µM. As for targeting the AR, MCF7 Tamoxifen sensitive and resistant cells were not affected by the AR antagonists to determine an IC50. The cell viability for all MCF7 sub-clones only decreased for high concentrations of 5.56 µM - 50 µM in Bicalutamide and 16.67 µM – 50 µM of MDV1300. Furthermore, hormone depletion of MCF7 G11 Tamoxifen resistant sub-clones did not show a great response to DHT stimulation or the AR antagonists. In the RT-qPCR, the MCF7 G11 cells showed an increase in mRNA expression for ER, AR, and PR after 4 hours of treatment with estradiol. As for the DHT treatment, ER, AR, PR, and PSA had a minimal increase in the fold change, but the fold change in AR was less than in the estradiol treatment. The Mayo Clinic will investigate the possible usage of AR as a biomarker through immunohistochemistry.

Contributors

Agent

Created

Date Created
  • 2014-05

148450-Thumbnail Image.png

Initial experiment of Adaptive Therapy to control Breast Cancer

Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression.

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

Contributors

Agent

Created

Date Created
  • 2021-05

136571-Thumbnail Image.png

Migration and invasion study of non-transformed mammary epithelial cells overexpressing TP53 missense mutations frequently occurring in breast cancer

Description

The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of

The purpose of this project was to identify proteins associated with the migration and invasion of non-transformed MCF10A mammary epithelial cells with ectopically expressed missense mutations in p53. Because of the prevalence of TP53 missense mutations in basal-like and triple-negative breast cancer tumors, understanding the effect of TP53 mutations on the phenotypic expression of human mammary epithelial cells may offer new therapeutic targets for those currently lacking in treatment options. As such, MCF10A mammary epithelial cells ectopically overexpressing structural mutations (G245S, H179R, R175H, Y163C, Y220C, and Y234C) and DNA-binding mutations (R248Q, R248W, R273C, and R273H) in the DNA-binding domain were selected for use in this project. Overexpression of p53 in the mutant cell lines was confirmed by western blot and q-PCR analysis targeting the V5 epitope tag present in the pLenti4 vector used to transduce TP53 into the mutant cell lines. Characterization of the invasion and migration phenotypes resulting from the overexpression of p53 in the mutant cell lines was achieved using transwell invasion and migration assays with Boyden chambers. Statistical analysis showed that three cell lines—DNA-contact mutants R248W and R273C and structural mutant Y220C—were consistently more migratory and invasive and demonstrated a relationship between the migration and invasion properties of the mutant cell lines. Two families of proteins were then explored: those involved in the Epithelial-Mesenchymal Transition (EMT) and matrix metalloproteinases (MMPs). Results of q-PCR and immunofluorescence analysis of epithelial marker E-cadherin and mesenchymal proteins Slug and Vimentin did not show a clear relationship between mRNA and protein expression levels with the migration and invasiveness phenotypes observed in the transwell studies. Results of western blotting, q-PCR, and zymography of MMP-2 and MMP-9 also did not show any consistent results indicating a definite relationship between MMPs and the overall invasiveness of the cells. Finally, two drugs were tested as possible treatments inhibiting invasiveness: ebselen and SBI-183. These drugs were tested on only the most invasive of the MCF10A p53 mutant cell lines (R248W, R273C, and Y220C). Results of invasion assay following 30 μM treatment with ebselen and SBI-183 showed that ebselen does not inhibit invasiveness; SBI-183, however, did inhibit invasiveness in all three cell lines tested. As such, SBI-183 will be an important compound to study in the future as a treatment that could potentially serve to benefit triple-negative or basal-like breast cancer patients who currently lack therapeutic treatment options.

Contributors

Agent

Created

Date Created
  • 2015-05