Matching Items (7)
Filtering by

Clear all filters

152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
153547-Thumbnail Image.png
Description
Mobile applications (Apps) markets with App stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. Several distinctive features of mobile App store markets including – (a) highly heterogeneous consumer preferences and values, (b) high consumer cognitive burden

Mobile applications (Apps) markets with App stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. Several distinctive features of mobile App store markets including – (a) highly heterogeneous consumer preferences and values, (b) high consumer cognitive burden of searching a large selection of similar Apps, and (c) continuously updateable product features and price – present a unique opportunity for IS researchers to investigate theoretically motivated research questions in this area. The aim of this dissertation research is to investigate the key determinants of mobile Apps success in App store markets. The dissertation is organized into three distinct and related studies. First, using the key tenets of product portfolio management theory and theory of economies of scope, this study empirically investigates how sellers’ App portfolio strategies are associated with sales performance over time. Second, the sale performance impacts of App product cues, generated from App product descriptions and offered from market formats, are examined using the theories of market signaling and cue utilization. Third, the role of App updates in stimulating consumer demands in the presence of strong ranking effects is appraised. The findings of this dissertation work highlight the impacts of sellers’ App assortment, strategic product description formulation, and long-term App management with price/feature updates on success in App market. The dissertation studies make key contributions to the IS literature by highlighting three key managerially and theoretically important findings related to mobile Apps: (1) diversification across selling categories is a key driver of high survival probability in the top charts, (2) product cues strategically presented in the descriptions have complementary relationships with market cues in influencing App sales, and (3) continuous quality improvements have long-term effects on App success in the presence of strong ranking effects.
ContributorsLee, Gun Woong (Author) / Santanam, Raghu (Thesis advisor) / Gu, Bin (Committee member) / Park, Sungho (Committee member) / Arizona State University (Publisher)
Created2015
150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
155954-Thumbnail Image.png
Description
The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They

The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They are not only significant annoyances but also result in significant financial losses in the economy. According to complaint data from the FTC, complaints on illegal calls have made record numbers in recent years. Americans lose billions to fraud due to malicious telephone communication, despite various efforts to subdue telephone spam, scam, and robocalls.

In this dissertation, a study of what causes the users to fall victim to telephone scams is presented, and it demonstrates that impersonation is at the heart of the problem. Most solutions today primarily rely on gathering offending caller IDs, however, they do not work effectively when the caller ID has been spoofed. Due to a lack of authentication in the PSTN caller ID transmission scheme, fraudsters can manipulate the caller ID to impersonate a trusted entity and further a variety of scams. To provide a solution to this fundamental problem, a novel architecture and method to authenticate the transmission of the caller ID is proposed. The solution enables the possibility of a security indicator which can provide an early warning to help users stay vigilant against telephone impersonation scams, as well as provide a foundation for existing and future defenses to stop unwanted telephone communication based on the caller ID information.
ContributorsTu, Huahong (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Thesis advisor) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2017
154452-Thumbnail Image.png
Description
By collecting and analyzing more than two million tweets, U.S. House Representatives’ voting records in 111th and 113th Congress, and data from other resources I study several aspects of adoption and use of Twitter by Representatives. In the first chapter, I study the overall impact of Twitter use by Representatives

By collecting and analyzing more than two million tweets, U.S. House Representatives’ voting records in 111th and 113th Congress, and data from other resources I study several aspects of adoption and use of Twitter by Representatives. In the first chapter, I study the overall impact of Twitter use by Representatives on their political orientation and their political alignment with their constituents. The findings show that Representatives who adopted Twitter moved closer to their constituents in terms of political orientation.

By using supervised machine learning and text mining techniques, I shift the focus to synthesizing the actual content shared by Representatives on Twitter to evaluate their effects on Representatives’ political polarization in the second chapter. I found support for the effects of repeated expressions and peer influence in Representatives’ political polarization.

Last but not least, by employing a recently developed dynamic network model (separable temporal exponential-family random graph model), I study the effects of homophily on formation and dissolution of Representatives’ Twitter communications in the third chapter. The results signal the presence of demographic homophily and value homophily in Representatives’ Twitter communications networks.

These three studies altogether provide a comprehensive picture about the overall consequences and dynamics of use of online social networking platforms by Representatives.
ContributorsMosuavi, Seyedreza (Author) / Gu, Bin (Thesis advisor) / Vinzé, Ajay S. (Committee member) / Shi, Zhan (Michael) (Committee member) / Arizona State University (Publisher)
Created2016
154772-Thumbnail Image.png
Description
The recent changes in the software markets gave users an unprecedented number

of alternatives for any given task. In such a competitive environment, it is imperative

to understand what drives user behavior. To that end, the research presented in

this dissertation, tries to uncover the impact of business strategies often used in the

software

The recent changes in the software markets gave users an unprecedented number

of alternatives for any given task. In such a competitive environment, it is imperative

to understand what drives user behavior. To that end, the research presented in

this dissertation, tries to uncover the impact of business strategies often used in the

software markets.

The dissertation is organized into three distinct studies into user choice and post

choice use of software. First using social judgment theory as foundation, zero price

strategies effects on user choice is investigated, with respect to product features,

consumer characteristics, and context effects. Second, role of social features in

moderating network effects on user choice is studied. And finally, the role of social

features on the effectiveness of add-on content strategy on continued user engagement

is investigated.

The findings of this dissertation highlight the alignments between popular business

strategies and broad software context. The dissertation contributes to the litera-

ture by uncovering hitherto overlooked complementarities between business strategy

and product features: (1) zero price strategy enhances utilitarian features but not

non-utilitarian features in software choice, (2) social features only enhance network

externalities but not social influence in user choice, (3) social features enhance the

effect of add-on content strategy in extending software engagement.
ContributorsKanat, Irfan (Author) / Santanam, Raghu (Thesis advisor) / Vinze, Ajay (Thesis advisor) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2016
155149-Thumbnail Image.png
Description
Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made

Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made cyber systems omnipotent, and control many aspects of human lives. Emerging trends in successful cyber system breaches have shown increasing sophistication in attacks and that attackers are no longer limited by resources, including human and computing power. Most existing cyber defense systems for IoT systems have two major issues: (1) they do not incorporate human user behavior(s) and preferences in their approaches, and (2) they do not continuously learn from dynamic environment and effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security solutions generated may not be usable or implementable by the user(s) thereby drastically reducing the effectiveness of these security solutions.

In order to address these major issues, a comprehensive approach to securing ubiquitous smart devices in IoT environment by incorporating probabilistic human user behavioral inputs is presented. The approach will include techniques to (1) protect the controller device(s) [smart phone or tablet] by continuously learning and authenticating the legitimate user based on the touch screen finger gestures in the background, without requiring users’ to provide their finger gesture inputs intentionally for training purposes, and (2) efficiently configure IoT devices through controller device(s), in conformance with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to the changing environment. The effectiveness of the approach will be demonstrated with experiments that are based on collected user behavioral data and simulations.
ContributorsBuduru, Arun Balaji (Author) / Yau, Sik-Sang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016