Matching Items (4)
Filtering by

Clear all filters

136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136164-Thumbnail Image.png
Description
The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise

The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise ratios (S/N) from -10 dB to +15 dB for a control group of ten participants and one US military veteran with history of service-connected TBI. All participants had normal hearing sensitivity defined as thresholds of 20 dB or better at frequencies from 250-8000 Hz in addition to having tympanograms within normal limits. Comparison of the data collected on the control group versus the veteran suggested that the veteran performed worse than the majority of the control group on the AzBio Sentence Test. Further research with more participants would be beneficial to our understanding of how veterans with TBI perform on speech recognition tests in the presence of background noise.
ContributorsCorvasce, Erica Marie (Author) / Peterson, Kathleen (Thesis director) / Williams, Erica (Committee member) / Azuma, Tamiko (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor)
Created2015-05
134592-Thumbnail Image.png
Description
Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or

Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or amplify signal, and if signal is amplified when using an Ag/AgCl working electrode. From the results, it was determined that EPOP is neither a redox mediator, since it cannot transfer its own electrons, nor an electron mediator, since it does not amplify measured current at a specific voltage. Rather, it behaves as an electron sink capacitor with inconsistent behavior when Ag/AgCl is used as the working electrode with the redox mediator alone or with the redox mediator using in combination with glucose oxidase (GOx) and glucose. This was validated using AC-Impedance which gave a -3.3999 slope for isolated 0.05 g/mL EPOP in solution and R2 value of 0.992 displaying it had more capacitor-like behavior compared to resistor-like behavior. For this reason, EPOP was infused into a carbon screen-printed electrode by adding it dissolved and undissolved at two levels into carbon ink. The effectiveness of this electrode was tested using a potentiostatic CV. For the 0.1 g/mL EPOP dissolved in carbon ink, the reduction voltage peak (0.18 V) was found to be slightly higher than a GDE (0.14 V); however, the measured current was found to be 1.57 times the amplitude of a GDE. When 0.05 g/mL EPOP in PBS dissolved in graphite ink was used to detect glucose as the working electrode, there was increased signal amplification, and therefore, increased sensitivity to glucose when using EPOP infused electrodes. This offers promising results for disposable glucose sensors.
ContributorsKapadia, Meera Vipul (Author) / LaBelle, Jeffrey (Thesis director) / Islam, Rafiqul (Committee member) / Honikel, Mackenzie (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12