Matching Items (11)
151927-Thumbnail Image.png
Description
INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal

INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal sedentary work day in pre-hypertensive adults. METHODS: Participants were 7 pre-hypertensive (127 + 8 mmHg / 83 + 8 mmHg) adults (3 male, 4 female, age = 42 + 12 yr) who participated in a randomized, cross-over study that included a control and a walking treatment. Only those who indicated regularly sitting at least 8 hours/day and no structured physical activity were enrolled. Treatment days were randomly assigned and were performed one week apart. Walking treatment consisted of periodically increasing walk time up to 2.5 hours over the course of an 8 hour work day on a walking workstation (Steelcase Company, Grand Rapids, MI). Walk speed was set at 1 mph. Participants wore an ambulatory blood pressure cuff (Oscar 2, SunTech Medical, Morrisville, NC) for 24-hours on both treatment days. Participants maintained normal daily activities on the control day. ABP data collected from 9:00 am until 10:00 pm of the same day were included in statistical analyses. Linear mixed models were used to detect differences in systolic (SBP) and diastolic blood pressure (DBP) by treatment condition over the whole day and post workday for the time periods between 4 -10 pm when participants were no longer at work. RESULTS:BP was significantly lower in response to the walking treatment compared to the control day (Mean SBP 126 +7 mmHg vs.124 +7 mmHg, p=.043; DBP 80 + 3 mmHg vs. 77 + 3 mmHg, p = 0.001 respectively). Post workday (4:00 to 10:00 pm) SBP decreased 3 mmHg (p=.017) and DBP decreased 4 mmHg (p<.001) following walking. CONCLUSION: Even low intensity exercise such as walking on a walking workstation is effective for significantly reducing acute BP when compared to a normal work day.
ContributorsZeigler, Zachary (Author) / Swan, Pamela (Thesis advisor) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
152971-Thumbnail Image.png
Description
The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to varying modalities, ages, and efficiency calculations. The present study attempted to address oxygen uptake, caloric expenditure, walking economy, and gross
et

The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to varying modalities, ages, and efficiency calculations. The present study attempted to address oxygen uptake, caloric expenditure, walking economy, and gross
et cycling efficiency in young (18-59 years old) and older (60-81 years old) adults (N=444). Walking was performed at three miles per hour by 86 young (mean = 29.60, standard deviation (SD) = 10.50 years old) and 121 older adults (mean = 66.80, SD = 4.50 years old). Cycling at 50 watts (60-70 revolutions per minute) was performed by 116 young (mean= 29.00, SD= 10.00 years old) and 121 older adults (m = 67.10 SD = 4.50 years old). Steady-state sub-maximal gross
et oxygen uptake and caloric expenditures from each activity and rest were analyzed. Net walking economy was represented by net caloric expenditure (kilocalories/kilogram/min). Cycling measures included percent gross
et cycling efficiency (kilo-calorie derived). Linear regressions were used to assess each measure as a function of age. Differences in age group means were assessed using independent t-tests for each modality (alpha = 0.05). No significant differences in mean oxygen uptake nor walking economy were found between young and older walkers (p>0.05). Older adults performing cycle ergometry demonstrated lower gross
et oxygen uptakes and lower gross caloric expenditures (p< 0.05).
ContributorsFlores, Michelle (Author) / Gaesser, Glenn A (Committee member) / Campbell, Kathryn D (Committee member) / Angadi, Siddhartha S (Committee member) / Arizona State University (Publisher)
Created2014
157461-Thumbnail Image.png
Description
Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a level of intelligence seen in human walking. As such, this thesis

focuses on the mechanisms involved during human walking, while transitioning from

rigid to compliant surfaces such as from pavement to sand, grass or granular media.

Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for

human walking, rigid to compliant surface transitions are simulated. The analysis of

muscular activation during the transition from rigid to different compliant surfaces

reveals specific anticipatory muscle activation that precedes stepping on a compliant

surface. There is also an indication of varying responses for different surface stiffness

levels. This response is observed across subjects. Results obtained are novel and

useful in establishing a framework for implementing control algorithm parameters to

improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt

to a new surface and therefore resulting in a more robust smart powered lower limb

prosthesis.
ContributorsObeng, Ruby Afriyie (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Thesis advisor) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
136474-Thumbnail Image.png
Description
As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability

As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability are less likely to be physically active and more likely to be overweight. The purpose of this study was to study walking routes from schools in low-income neighborhoods in Southwestern United States to a local community center. Walking routes from the three study schools (South Mountain High School, Percy Julian Middle School, and Rose Linda Elementary School) were determined by distance, popularity, and the presence of a major thoroughfare. Segments and intersections, which formed the routes, were randomly selected from each school's buffer region. The walking routes as a whole, along with the segments and intersections, were audited and scored using built environment assessments tools: MAPS, PEQI and Walkability Checklist. These scores were utilized to develop interactive mapping tools to visualize the quality of the routes, segments and intersections and identify areas for improvement. Results showed that the routes from Percy Julian to the Kroc Center were, overall, rated higher than routes from the other two schools. The highest scoring route, from the seven routes studied, was route 2 from Percy Julian to the Kroc Center along Broadway Road. South Mountain High School was overall the worst starting point for walking to the Kroc Center as those three walking routes were graded as the least walkable. Possible areas for improvement include installing traffic calming features along major thoroughfares and reducing the perceived risk to pedestrian safety by beautifying the community by planting greenery. Future directions include studying the built environment in South Phoenix communities that surround the Kroc Center.
ContributorsZeien, Justin Lee (Author) / Buman, Matthew (Thesis director) / Hekler, Eric (Committee member) / Fellows, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
Description

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced with extreme heat in the summer along with the increased internal heat production caused by the physical activity required to use public transportation. In this study, I estimated total exposure and average exposure per rider for six stops in Phoenix. To do this I used City of Phoenix ridership data, weather data, and survey responses from an ASU City of Phoenix Bus Stop Survey conducted in summer 2016. These data sets were combined by multiplying different metrics to produce various exposure values. During analysis two sets of calculations were made. One keeping weather constant and another keeping ridership constant. I found that there was a large range of exposure between the selected stops and that the thermal environment influences the amount of exposure depending on the time of day the exposure is occurring. During the morning a greener location leads to less exposure, while in the afternoon an urban location leads to less exposure. Know detailed information about exposure at these stops I was also able to evaluate survey participants' thermal comfort at each stop and how it may relate to exposure. These findings are useful in making educated transportation planning decisions and improving the quality of life for people living in places with extreme summer temperatures.

ContributorsGerster, Katrina Ashley (Author) / Hondula, David M. (Thesis director) / Watkins, Lance (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134228-Thumbnail Image.png
Description
Gait training therapies are methods for improving the walking stability of individuals who have difficulty walking, whether it is due to injury or neuromuscular conditions. Perturbation training that causes individuals to correct their balance and actively improve their stability could potentially lead to longer term benefits for those with unstable

Gait training therapies are methods for improving the walking stability of individuals who have difficulty walking, whether it is due to injury or neuromuscular conditions. Perturbation training that causes individuals to correct their balance and actively improve their stability could potentially lead to longer term benefits for those with unstable gait. Subjects had the medial lateral movement of their center of mass measured through motion-tracking software (D-Flow 3 and Vicon Nexus 2.2). Perturbation training completed with the GRAIL treadmill randomly triggered medial-lateral sway perturbations of 3 cm a total of fifteen times throughout a five minute training period. Data collected to compare baseline, post-training, and one week follow-up dynamic stabilities were recorded over three minutes without any perturbations. There were no statistically significant differences when comparing the results of all subjects at each instance of data collection with each other. Thus, the perturbation training had no significant impact on the dynamic stability of gait. Major limitations that lend to the inconclusive nature of this study include a small sample size, no repetitions, and only one round of training. Further work can be done to better assess the potential impacts of perturbation training on walking stability for therapeutic use.
ContributorsJamali, Neema (Author) / Lockhart, Thurmon (Thesis director) / Soangra, Rahul (Committee member) / School of Biological and Health Systems Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154900-Thumbnail Image.png
Description
ABSTRACT

Objective: The purpose of this randomized parallel two-arm trial was to examine the effect that an intervention of combining daily almond consumption (2.5 ounces) with a walking program would have on heart rate recovery and resting heart rate when compared to the control group that consumed a placebo (cookie butter)

ABSTRACT

Objective: The purpose of this randomized parallel two-arm trial was to examine the effect that an intervention of combining daily almond consumption (2.5 ounces) with a walking program would have on heart rate recovery and resting heart rate when compared to the control group that consumed a placebo (cookie butter) in men and postmenopausal women, aged 20-69, in Phoenix, Arizona.

Design: 12 men and women from Phoenix, Arizona completed an 8-week walking study (step goal: 10,000 steps per day). Subjects were healthy yet sedentary, non-smokers, free from gluten or nut allergies, who had controlled blood pressure. At week 5, participants were randomized into one of two groups: ALM (2.5 oz of almonds daily for last 3 weeks of trial) or CON (4 tbsp of cookie butter daily for last 3 weeks of trial). Body weight, BMI, and percent body fat were measured using a stadiometer and Tanita at the screening visit. Resting heart rate, heart rate recovery, and anthropometric measurements were taken at weeks 0, 5, and 8.

Results: 8 weeks of walking 10,000 steps per day, with or without 3 weeks of almond consumption did not significantly improve heart rate recovery (p=0.818) or resting heart rate (0.968).

Conclusions: Almond consumption in combination with a walking intervention does not significantly improve heart rate recovery or resting heart rate.
ContributorsMcElaney, Elizabeth Anne (Author) / Johnston, Carol S (Thesis advisor) / Lespron, Christy L (Committee member) / Sweazea, Karen L (Committee member) / Arizona State University (Publisher)
Created2016
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
153650-Thumbnail Image.png
Description
Background: Postprandial hyperglycemia can increase levels of oxidative stress and is an independent risk factor for complications associated with type 2 diabetes.

Purpose: To evaluate the acute effects of a 15-min postmeal walk on glucose control and markers of oxidative stress following a high-carbohydrate meal.

Methods: Ten obese subjects (55.0 ± 10.0

Background: Postprandial hyperglycemia can increase levels of oxidative stress and is an independent risk factor for complications associated with type 2 diabetes.

Purpose: To evaluate the acute effects of a 15-min postmeal walk on glucose control and markers of oxidative stress following a high-carbohydrate meal.

Methods: Ten obese subjects (55.0 ± 10.0 yrs) with impaired fasting glucose (107.1 ± 9.0 mg/dL) participated in this repeated measures trial. Subjects arrived at the laboratory following an overnight fast and underwent one of three conditions: 1) Test meal with no walking or fiber (CON), 2) Test meal with 10g fiber and no walking (FIB), 3) Test meal with no fiber followed by a 15-min treadmill walk at preferred walking speed (WALK). Blood samples were taken over four hours and assayed for glucose, insulin, thiobarbituric reactive substances (TBARS), catalase, uric acid, and total antioxidant capacity (TAC). A repeated measures ANOVA was used to compare mean differences for all outcome variables.

Results: The 2hr and 4hr incremental area under the curve (iAUC) for glucose was lower in both FIB (2hr: -93.59 mmol∙120 min∙L-1, p = 0.006; 4hr: -92.59 mmol∙240 min∙L-1; p = 0.041) and WALK (2hr: -77.21 mmol∙120 min∙L-1, p = 0.002; 4hr: -102.94 mmol∙240 min∙L-1; p = 0.005) conditions respectively, compared with CON. There were no differences in 2hr or 4hr iAUC for glucose between FIB and WALK (2hr: p = 0.493; 4hr: p = 0.783). The 2hr iAUC for insulin was significantly lower in both FIB (-37.15 μU ∙h/mL; p = 0.021) and WALK (-66.35 μU ∙h/mL; p < 0.001) conditions, compared with CON, and was significantly lower in the WALK (-29.2 μU ∙h/mL; p = 0.049) condition, compared with FIB. The 4hr iAUC for insulin in the WALK condition was significantly lower than both CON (-104.51 μU ∙h/mL; p = 0.001) and FIB (-77.12 μU ∙h/mL; p = 0.006) conditions. Markers of oxidative stress were not significantly different between conditions.

Conclusion: A moderate 15-minute postmeal walk is an effective strategy to reduce postprandial hyperglycemia. However, it is unclear if this attenuation could lead to improvements in postprandial oxidative stress.
ContributorsKnurick, Jessica (Author) / Johnston, Carol S (Thesis advisor) / Sweazea, Karen L (Committee member) / Gaesser, Glenn A (Committee member) / Shaibi, Gabriel Q (Committee member) / Lee, Chong D (Committee member) / Arizona State University (Publisher)
Created2015
131408-Thumbnail Image.png
Description
Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how

Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how the modulation of ankle stiffness is altered throughout the stance phase of the gait cycle depending on the environment the ankle is interacting with. Ten young healthy subjects with no neurological impairments or history of ankle injury were tested by walking over a robotic platform which collected torque and position data. The platform performed a perturbation on the ankle at 20%, 40%, and 60% of their stance phase in order to estimate ankle stiffness and evaluate if the environment plays a role on its modulation. The platform provided either a rigid environment or a compliant environment in which it was compliant and deflected according to the torque applied to the platform. Subjects adapted in different ways to achieve balance in the different environments. When comparing the environments, subjects modulated their stiffness to either increase, decrease, or remain the same. Notably, stiffness as well as the subjects’ center of pressure was found to increase with time as they transitioned from late loading to terminal stance (heel strike to toe-off) regardless of environmental conditions. This allowed for a model of ankle stiffness to be developed as a function of center of pressure, independent of whether a subject is walking on the rigid or compliant environment. The modulation of stiffness parameters characterized in this study can be used in the design and control of lower extremity robotics which focus on accurate biomimicry of the healthy human ankle. The stiffness characteristics can also be used to help identify particular ankle impairments and to design proper treatment for individuals such as those who have suffered from a stroke or MS. Changing environments is where a majority of tripping incidents occur, which can lead to significant injuries. For this reason, studying healthy ankle behavior in a variety of environments is of particular interest.
ContributorsBliss, Clayton F (Author) / Lee, Hyunglae (Thesis director) / Marvi, Hamid (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05