Matching Items (38)
Filtering by
- All Subjects: Mental Health
- Creators: School of Life Sciences
Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.
Samantha and Rachel both have a history in gifted education and wanted to create a safe space for the two of them and their peers to discuss the effects gifted/ accelerated education has had on them, specifically pertaining to burnout. To best dive into this matter, Gifted Kid Syndrome podcast was born! During which, our hosts interviewed students and professionals, allowing everyone to share their pasts, their hopes for the future, and what they’ve learned along the way regarding mental health, identity, education, and personal success.

Unbeknown to her, Lonnie is the key between two realities - a result of her family’s grief and feuding. When she finally discovers her vital role, she is forcefully placed on a path of finding - and fixing - the truth about her family and the two battling realities. Struggling with her mental health as she continues down this path, her understanding of good versus evil is challenged.
Santé is an event planning company that aims to address the growing need for mental health support among university students. The company's focus is on creating events that are specifically designed to help students cope with stress. Santé's events offer a variety of activities and resources that cater to students' mental and emotional needs. From outdoor walks to movie night sessions, Santé's events aim to create a safe and welcoming space for students to de-stress and connect with others. With a team of experienced event planners, Santé is dedicated to providing high-quality events that promote mental wellness and help students navigate the challenges of university life.
Background: Creation and reuse of reliable clinical code sets could accelerate the use of EHR data for research. To support that vision, there is an imperative need for methodologically. driven, transparent and automatic approaches to create error-free clinical code sets. Objectives: Propose and evaluate an automatic, generalizable, and knowledge-based approach that uses as starting point a correct and complete knowledge base of ingredients (e.g., the US Drug Enforcement Administration Controlled Substance repository list includes fentanyl as an opioid) to create medication code sets (e.g., Abstral is an opioid medication with fentanyl as ingredient). Methods: Algorithms were written to convert lists of ingredients into medication code sets, where all the medications are codified in the RxNorm terminology, are active medications and have at least one ingredient from the ingredient list. Generalizability and accuracy of the methods was demonstrated by applying them to the discovery of opioid and anti-depressant medications. Results: Errors (39 (1.73%) and 13 (6.28%)), obsolete drugs (172 (7.61%) and 0 (0%)) and missing medications (1,587 (41.26%) and 1,456 (87.55%)) were found in publicly available opioid and antidepressant medication code sets, respectively. Conclusion: The proposed knowledge-based algorithms to discover correct, complete, and up to date ingredient-based medication code sets proved to be accurate and reusable. The resulting algorithms and code sets have been made publicly available for others to use.
Background: Creation and reuse of reliable clinical code sets could accelerate the use of EHR data for research. To support that vision, there is an imperative need for methodologically. driven, transparent and automatic approaches to create error-free clinical code sets. Objectives: Propose and evaluate an automatic, generalizable, and knowledge-based approach that uses as starting point a correct and complete knowledge base of ingredients (e.g., the US Drug Enforcement Administration Controlled Substance repository list includes fentanyl as an opioid) to create medication code sets (e.g., Abstral is an opioid medication with fentanyl as ingredient). Methods: Algorithms were written to convert lists of ingredients into medication code sets, where all the medications are codified in the RxNorm terminology, are active medications and have at least one ingredient from the ingredient list. Generalizability and accuracy of the methods was demonstrated by applying them to the discovery of opioid and anti-depressant medications. Results: Errors (39 (1.73%) and 13 (6.28%)), obsolete drugs (172 (7.61%) and 0 (0%)) and missing medications (1,587 (41.26%) and 1,456 (87.55%)) were found in publicly available opioid and antidepressant medication code sets, respectively. Conclusion: The proposed knowledge-based algorithms to discover correct, complete, and up to date ingredient-based medication code sets proved to be accurate and reusable. The resulting algorithms and code sets have been made publicly available for others to use.
Background: Creation and reuse of reliable clinical code sets could accelerate the use of EHR data for research. To support that vision, there is an imperative need for methodologically. driven, transparent and automatic approaches to create error-free clinical code sets. Objectives: Propose and evaluate an automatic, generalizable, and knowledge-based approach that uses as starting point a correct and complete knowledge base of ingredients (e.g., the US Drug Enforcement Administration Controlled Substance repository list includes fentanyl as an opioid) to create medication code sets (e.g., Abstral is an opioid medication with fentanyl as ingredient). Methods: Algorithms were written to convert lists of ingredients into medication code sets, where all the medications are codified in the RxNorm terminology, are active medications and have at least one ingredient from the ingredient list. Generalizability and accuracy of the methods was demonstrated by applying them to the discovery of opioid and anti-depressant medications. Results: Errors (39 (1.73%) and 13 (6.28%)), obsolete drugs (172 (7.61%) and 0 (0%)) and missing medications (1,587 (41.26%) and 1,456 (87.55%)) were found in publicly available opioid and antidepressant medication code sets, respectively. Conclusion: The proposed knowledge-based algorithms to discover correct, complete, and up to date ingredient-based medication code sets proved to be accurate and reusable. The resulting algorithms and code sets have been made publicly available for others to use.
Background: Creation and reuse of reliable clinical code sets could accelerate the use of EHR data for research. To support that vision, there is an imperative need for methodologically. driven, transparent and automatic approaches to create error-free clinical code sets. Objectives: Propose and evaluate an automatic, generalizable, and knowledge-based approach that uses as starting point a correct and complete knowledge base of ingredients (e.g., the US Drug Enforcement Administration Controlled Substance repository list includes fentanyl as an opioid) to create medication code sets (e.g., Abstral is an opioid medication with fentanyl as ingredient). Methods: Algorithms were written to convert lists of ingredients into medication code sets, where all the medications are codified in the RxNorm terminology, are active medications and have at least one ingredient from the ingredient list. Generalizability and accuracy of the methods was demonstrated by applying them to the discovery of opioid and anti-depressant medications. Results: Errors (39 (1.73%) and 13 (6.28%)), obsolete drugs (172 (7.61%) and 0 (0%)) and missing medications (1,587 (41.26%) and 1,456 (87.55%)) were found in publicly available opioid and antidepressant medication code sets, respectively. Conclusion: The proposed knowledge-based algorithms to discover correct, complete, and up to date ingredient-based medication code sets proved to be accurate and reusable. The resulting algorithms and code sets have been made publicly available for others to use.