Matching Items (15)

Filtering by

Clear all filters

132904-Thumbnail Image.png

Low-Budget, Variable-Length, Arduino-Based Robotics Unit

Description

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.

Contributors

Agent

Created

Date Created
2019-05

134014-Thumbnail Image.png

Classroom Integration of STEM Using Learning Centers

Description

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing demand for STEM professions and proficiency within each aspect, the education system and individual educators require lessons and modalities that motivate learning in each of these areas. Administrators and teachers need creative ways to provide effective STEM implementation. Currently, the education system as a whole lacks creative and motivating material for these four domains. Not only this, but there has been a misunderstanding in regard to what effective STEM implementation entails, as well as a dearth of classroom ready lessons for educators. As a result, this thesis project developed a way to implement STEM through the use of learning centers. Learning centers are defined as designated areas within a classroom that allow easy access to a variety of learning materials. Within these centers are activities that reinforce concepts by using inquiry-based learning. Learning centers are effective in developing additional concepts or providing students with a greater breadth of knowledge on a concept. This thesis project developed three STEM learning center activity boxes and two STEM learning center outlines. Creating effective STEM learning centers and outlines was a multistep process. The first step was to develop a 3E lesson plan for each activity. Once the lesson plans were revised and complete, the creation of the three activity boxes was next. To create the activity boxes, all the required materials and worksheets were gathered and printed. From there, the next step was to implement the learning centers in a classroom to observe the results and propose any modifications. Afterwards, a reflection detailing the results and modifications was made. In the end, the goal of this project was to develop easily implemented STEM activities for my future classroom. Coming up with a creative way to get kids curious and excited about STEM is key in building STEM awareness. Not only did my project create STEM activities I can implement, but it also allowed me the opportunity to share my activities with other teachers. As a result, influencing the spread of STEM amongst future and current teachers.

Contributors

Agent

Created

Date Created
2018-05

135964-Thumbnail Image.png

Tools to Teach 8th Grade Geometry: A 5-Day Lesson Kit

Description

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding are equally important in learning mathematics. Procedural fluency is the "ability to apply procedures accurately, efficiently, and flexibly... to build or modify procedures from other procedures" (National Council of Teachers of Mathematics, 2015). Procedural understanding may perceive as merely about the understanding of the arithmetic and memorizing the steps with no understanding but in reality, students need to decide which procedure to use for a given situation; here is where the conceptual understanding comes in handy. Students need the skills to integrate concepts and procedures to develop their own ways to solve a problem, they need to know how to do it and why they do it that way. The purpose of this 5-day unit is teaching with conceptual understanding through hands-on activities and the use of tools to learn geometry. Through these lesson plans, students should be able to develop the conceptual understanding of the angles created by parallel lines and transversal, interior and exterior angles of triangles and polygons, and the use of similar triangles, while developing the procedural understanding. These lesson plans are created to align with the eighth grade Common Core Standards. Students are learning angles through the use of protractor and patty paper, making a conjecture based on their data and experience, and real-life problem solving. The lesson plans used the direct instruction and the 5E inquiry template from the iTeachAZ program. The direct instruction lesson plan includes instructional input, guided practice and individual practice. The 5E inquiry lesson plan has five sections: engage, explore, explain, elaborate and evaluate.

Contributors

Agent

Created

Date Created
2015-12

Ethical or Not: Teaching Bioethics in a High School Science Classroom

Description

Science and technology have significant influence over the everyday lives of ordinary citizens. As these two disciplines have become more advanced, their influence has only become more pronounced, leading to many socioscientific issues and bioethical dilemmas that society and scientists

Science and technology have significant influence over the everyday lives of ordinary citizens. As these two disciplines have become more advanced, their influence has only become more pronounced, leading to many socioscientific issues and bioethical dilemmas that society and scientists must grapple with. In order to create informed, thoughtful citizens and effective future scientists, science educators must provide students with the skills they need to assess, evaluate, and address bioethical controversies. To do this, educators must explicitly teach students about bioethics and scientific argumentation. However, currently, this content is not commonly taught in science classrooms. Instead, science is presented as a discipline in which there are clear answers. Students are often expected to memorize lists of facts and are not made aware of the impact that science has on their own lives and those of others. This three-lesson unit seeks to help students make the connections between science content and its social implications and teach them the scientific argumentation skills necessary to critically evaluate and defend their positions regarding bioethical dilemmas. In the first lesson, students learn about bioethics and practice developing potential solutions to hypothetical bioethical dilemmas. In the second lesson, students are introduced to scientific argumentation and use their new skills to create mini-arguments regarding the bioethics of what happened to Henrietta Lacks, a black woman whose cervical cancer cells were used in research without her consent. Finally, in the third lesson, students work in groups to create fully developed arguments that support their position regarding the issue of tissue ownership. The last two lessons of the unit were implemented in a high school science classroom. After implementation, it was found that students have strong opinions regarding scientific controversies and enjoy learning and arguing about the social implications of science. However, students struggled to understand the mechanics of scientific argumentation and had trouble clearly expressing their ideas and opinions via argumentation. Additionally, students were very dogmatic in their positions and displayed a lack of understanding of the nuance of bioethical controversies.

Contributors

Agent

Created

Date Created
2016-12

136902-Thumbnail Image.png

Education in the Hispanic Community

Description

This project largely focuses on the Latino population and how Hispanic parents should become more involved with their student's education in order to have them prosper in today's society.

Contributors

Created

Date Created
2014-05

136976-Thumbnail Image.png

YES: Youth Empowerment for Success the development of a program for Indigenous Youth

Description

By looking at the history and the current state of educational affairs in Indian Country there is an identifiable need to encourage Indigenous students to succeed. Theories involving decolonization, sovereignty rights, and the Indigenous pedagogy are essential to properly empower

By looking at the history and the current state of educational affairs in Indian Country there is an identifiable need to encourage Indigenous students to succeed. Theories involving decolonization, sovereignty rights, and the Indigenous pedagogy are essential to properly empower Indigenous youth. Research involved analyzing four previously implemented programs in Indigenous communities around the world which focused on education, culture, and decolonization. Data was collected through interviews and surveys from undergraduate and graduate students attending Arizona State University. From the information gathered a program is suggested which focuses on teaching Indigenous youth research methods and implementing a program within their community. The suggested program derives ideas from the aforementioned analyzed programs and cultural values in the Diné community.

Contributors

Agent

Created

Date Created
2014-05

135834-Thumbnail Image.png

Increasing Girls' Interest in STEM Through Problem-Based Learning

Description

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods,

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest is through day camps and other programs where girls complete a variety of activities related to science and engineering. These activities are usually designed around problem-based learning, a student-lead approach to teaching that requires students to work collaboratively and use background knowledge to solve some sort of given problem. In this project, a day camp for middle school girls was created and implemented to increase student interest in STEM through three problem-based learning activities. By analyzing survey data, it was concluded that the camp was successful in increasing interest and changing participants' attitudes towards science. This approach to learning could be applied to other subject areas, including mathematics, to increase the interest of both male and female students at the secondary level.

Contributors

Agent

Created

Date Created
2016-05

147572-Thumbnail Image.png

Teaching Environmental History: Interdisciplinary and Hands-On Learning in an Online Environment

Description

As we count down the years remaining before a global climate catastrophe, ever increases the importance of teaching environmental history and fostering environmental stewardship from a young age. In the age of globalization, nothing exists in a vacuum, yet our

As we count down the years remaining before a global climate catastrophe, ever increases the importance of teaching environmental history and fostering environmental stewardship from a young age. In the age of globalization, nothing exists in a vacuum, yet our traditional education system often fails to reflect the abundant connections between content areas that are prevalent outside of schools. In fact, many of the flaws of the field of education have been exacerbated by the COVID-19 pandemic and a forced transition to online schooling, with many educators reverting to outdated practices in a desperate attempt to get students through the year. The aim of this project was to design a unit curriculum with these issues in mind. This month-long environmental history unit engages students through the use of hands-on activities and promotes interdisciplinary connections. The unit can be taught in a physical, online, or hybrid American history class, and will hopefully inspire and motivate students to become environmental stewards as they look toward their futures on this planet.

Contributors

Created

Date Created
2021-05

Inquiry-Based Learning in Science Education

Description

This project examined the importance of inquiry in science education. The Arizona Science
Standards call for a change from teaching facts to teaching students to construct explanations of phenomena by engaging in science and engineering practices. Through a blend of

This project examined the importance of inquiry in science education. The Arizona Science
Standards call for a change from teaching facts to teaching students to construct explanations of phenomena by engaging in science and engineering practices. Through a blend of science and engineering practices, core ideas, and crosscutting concepts, the performance expectations form standards that address applying ideas to explanation of phenomena, problem solving, and decision making. The ideas conveyed in the standards need to be developed over time through multiple lessons. Rather than simply present information to students, the Arizona Science Standards require teachers to support students in constructing explanations of phenomena and developing solutions to problems. The integration of the Arizona Science Standards in the science curriculum through the Five E model has the potential to provide students with inquiry- based learning that will help develop their science literacy skills. The 5E inquiry model consists of five phases: Engagement, Exploration, Explanation, Elaboration, and Evaluation. Each phase contributes to the learning process as students are encouraged to actively build their knowledge. The learning experiences in science education become richer and more meaningful to students when the science literacy skills are successfully integrated into the 5E inquiry model. Not only will the students learn the skills of science, but also, they will be actively engaged with science content. Active engagements with science will likely foster interest and positive attitudes towards science. This thesis project developed a way to implement inquiry-based learning through an electricity and magnetism unit that uses the 5E model and aligns with the Arizona State Science Standards. The goal of this project was to develop a science unit that can be implemented in future classrooms.

Contributors

Agent

Created

Date Created
2019-05

131042-Thumbnail Image.png

First-Year Teachers Manual

Description

The creative project, First-Year Teachers Manual, is specifically designed to be a resource for beginning teachers, along with returning educators, who are seeking tips about the profession and day-to-day duties of teaching. The manual is research-based and is a toolbox

The creative project, First-Year Teachers Manual, is specifically designed to be a resource for beginning teachers, along with returning educators, who are seeking tips about the profession and day-to-day duties of teaching. The manual is research-based and is a toolbox of tips, suggestions, and additional resources that every teacher should know before walking into their first classroom. The information presented can be adapted for various grade levels and types of classroom settings.

Contributors

Agent

Created

Date Created
2020-12