Matching Items (4)
Filtering by

Clear all filters

132482-Thumbnail Image.png
DescriptionAcoustic Ecology is an undervalued field of study of the relationship between the environment and sound. This project aims to educate people on this topic and show people the importance by immersing them in virtual reality scenes. The scenes were created using VR180 content as well as 360° spatial audio.
ContributorsNeel, Jordan Tanner (Author) / LiKamWa, Robert (Thesis director) / Feisst, Sabine (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132683-Thumbnail Image.png
Description
Augmented Reality (AR) is a tool increasingly available to young learners and educators. This paper documents and analyzes the creation of an AR app used as a tool to teach fractions to young learners and enhance their engagement in the classroom. As an emerging technology reaching diffusion into the general

Augmented Reality (AR) is a tool increasingly available to young learners and educators. This paper documents and analyzes the creation of an AR app used as a tool to teach fractions to young learners and enhance their engagement in the classroom. As an emerging technology reaching diffusion into the general populace, AR presents a unique opportunity to engage users in the digital and real world. Additionally, AR can be enabled on most modern phones and tablets; therefore, it is extremely accessible and has a low barrier to entry. To integrate AR into the classroom in an affordable way, I created leARn, an AR application intended to help young learners understand fractions. leARn is an application intended to be used alongside traditional teaching methods, in order to enhance the engagement of students in the classroom. Throughout the development of the product, I not only considered usability and design, but also the effectiveness of the app in the classroom. Moreover, due to collaboration with Arizona State University Research Enterprises, I tested the application in a classroom with sixth, seventh and eighth grade students. This paper presents the findings from that testing period and analysis of the educational effectiveness of the concept based on data received from students.
ContributorsVan Dobben, Maureen Veronica (Author) / LiKamWa, Robert (Thesis director) / Swisher, Kimberlee (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
Realistic lighting is important to improve immersion and make mixed reality applications seem more plausible. To properly blend the AR objects in the real scene, it is important to study the lighting of the environment. The existing illuminationframeworks proposed by Google’s ARCore (Google’s Augmented Reality Software Development Kit) and Apple’s

Realistic lighting is important to improve immersion and make mixed reality applications seem more plausible. To properly blend the AR objects in the real scene, it is important to study the lighting of the environment. The existing illuminationframeworks proposed by Google’s ARCore (Google’s Augmented Reality Software Development Kit) and Apple’s ARKit (Apple’s Augmented Reality Software Development Kit) are computationally expensive and have very slow refresh rates, which make them incompatible for dynamic environments and low-end mobile devices. Recently, there have been other illumination estimation frameworks such as GLEAM, Xihe, which aim at providing better illumination with faster refresh rates. GLEAM is an illumination estimation framework that understands the real scene by collecting pixel data from a reflecting spherical light probe. GLEAM uses this data to form environment cubemaps which are later mapped onto a reflection probe to generate illumination for AR objects. It is noticed that from a single viewpoint only one half of the light probe can be observed at a time which does not give complete information about the environment. This leads to the idea of having a multi-viewpoint estimation for better performance. This thesis work analyzes the multi-viewpoint capabilities of AR illumination frameworks that use physical light probes to understand the environment. The current work builds networking using TCP and UDP protocols on GLEAM. This thesis work also documents how processor load sharing has been done while networking devices and how that benefits the performance of GLEAM on mobile devices. Some enhancements using multi-threading have also been made to the already existing GLEAM model to improve its performance.
ContributorsGurram, Sahithi (Author) / LiKamWa, Robert (Thesis advisor) / Jayasuriya, Suren (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2022