Matching Items (6)
Filtering by

Clear all filters

133909-Thumbnail Image.png
Description
The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this ga

The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this gap is human-robot interaction for a more hands-on and impactful experience that will leave students more interested in pursuing the field. Our project is a Robotic Head Kit that can be used in an educational setting to teach about its electrical, mechanical, programming, and psychological concepts. We took an existing robot head prototype and further advanced it so it can be easily assembled while still maintaining human complexity. Our research for this project dove into the electronics, mechanics, software, and even psychological barriers present in order to advance the already existing head design. The kit we have developed combines the field of robotics with psychology to create and add more life-like features and functionality to the robot, nicknamed "James Junior." The goal of our Honors Thesis was to initially fix electrical, mechanical, and software problems present. We were then tasked to run tests with high school students to validate our assembly instructions while gathering their observations and feedback about the robot's programmed reactions and emotions. The electrical problems were solved with custom PCBs designed to power and program the existing servo motors on the head. A new set of assembly instructions were written and modifications to the 3D printed parts were made for the kit. In software, existing code was improved to implement a user interface via keypad and joystick to give students control of the robot head they construct themselves. The results of our tests showed that we were not only successful in creating an intuitive robot head kit that could be easily assembled by high school students, but we were also successful in programming human-like expressions that could be emotionally perceived by the students.
ContributorsRathke, Benjamin (Co-author) / Rivera, Gerardo (Co-author) / Sodemann, Angela (Thesis director) / Itagi, Manjunath (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133797-Thumbnail Image.png
Description
Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.
ContributorsBurgess, Kylee Rae (Author) / Jordan, Shawn (Thesis director) / Sohoni, Sohum (Committee member) / Kinach, Barbara (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131809-Thumbnail Image.png
Description
Engineering is an interdisciplinary field that requires extensive knowledge of STEM topics. The ability to apply mathematical concepts in engineering applications is no exception. Some undergraduate engineering students struggle with early course work typically entrenched in learning underlying mathematics. Students are often able to understand engineering principles, but are unable

Engineering is an interdisciplinary field that requires extensive knowledge of STEM topics. The ability to apply mathematical concepts in engineering applications is no exception. Some undergraduate engineering students struggle with early course work typically entrenched in learning underlying mathematics. Students are often able to understand engineering principles, but are unable to understand the mathematics behind the principles. This is due to students finding it difficult to make connections and apply mathematics outside of routine computational calculations.

Traditional instruction of mathematics has relied predominantly on teacher-centered pedagogies or passive learning (e.g lecture). Active learning differs in that it includes student-centered approaches and has been shown to increase student understanding in STEM courses.

The purpose of this study is to explore and discover what elements lead to good problem-solving tasks in an active learning mathematics focused classroom. Elements were determined using interviews with mathematics instructors that currently use active learning techniques and problem-solving tasks in their classrooms. Instructors were asked to describe the process they use for creating tasks. An instructor’s guidebook will be created and made available based on the findings and discoveries of this study on how to create problem-solving tasks.

The three main categories of emergent themes were task structure, task development, and problem-solving environment. The emergent themes in task structure are useful for understanding what elements make a good problem-solving task. Knowing the particular challenges previous instructors faced in creating an active-learning environment will help instructors avoid common pitfalls. These elements of creating a problem-solving environment will also be included in the guidebook as a class cannot have good problem-solving tasks without an environment conducive to active learning.
ContributorsRossi, Nathaniel (Author) / Carberry, Adam (Thesis director) / Adamson, Scott (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131398-Thumbnail Image.png
Description
With the ongoing development of simulation technology, classic barriers to social interactions are beginning to be dismantled. One such exchange is encapsulated within education—instructors can use simulations to make difficult topics more manageable and accessible to students. Within simulations that include virtual humans, however, there are important factors to consider.

With the ongoing development of simulation technology, classic barriers to social interactions are beginning to be dismantled. One such exchange is encapsulated within education—instructors can use simulations to make difficult topics more manageable and accessible to students. Within simulations that include virtual humans, however, there are important factors to consider. Participants playing in virtual environments will act in a way that is consistent with their real-world behaviors—including their implicit biases. The current study seeks to determine the impact of virtual humans’ skin tone on participants’ behaviors when applying engineering concepts to simulated projects. Within a comparable study focused on a medical training simulation, significantly more errors and delays were made when working for the benefit of dark-skinned patients in a virtual context. In the current study, participants were given a choose-your-own-adventure style game in which they constructed simulated bridges for either a light- ordark-skinned community, and the number of errors and time taken for each decision was tracked. Results are expected to be consistent with previous study, indicating a higher number of errors and less time taken for each decision, although these results may be attenuated by a
lack of time pressure and urgency to the given situations. If these expected results hold, there may be implications for both undergraduate engineering curriculum and real-world engineering endeavors.
ContributorsEldemire, Kate (Author) / Craig, Scotty D. (Thesis director) / Roscoe, Rod D. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131479-Thumbnail Image.png
Description
This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser

This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser known engineering related topics, and increasing their literacy of terms and methods engineers use to solve problems. The effectiveness of the kit’s content and teaching methods was tested in a classroom of 6th graders and was measured using the responses from surveys handed out. I found that kit did in fact positively lead to a change in the way the students perceived engineering, and it taught students about new engineering related topics. Students were capable of completing difficult tasks of wiring and coding successfully through the use of detailed instruction. However, the instructions were seen in two opposing views of either being too overwhelming or more guidance was necessary.
ContributorsQuezada, Hebellyn Arleth (Author) / Aukes, Daniel (Thesis director) / Kellam, Nadia (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05