Matching Items (14)
Filtering by

Clear all filters

149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135201-Thumbnail Image.png
Description
Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a

Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a successful instructional method exist just outside our windows. This thesis, completed in conjunction with the ADE422 architectural studio, seeks to identify the qualities of a new educational paradigm and its architectural manifestation through an exploration of nature and biophilic design. Architectural Studio IV was challenged to develop a new academic model and corresponding architectural integration for the Herberger Young Scholars Academy, an educational institution for exceptionally gifted junior high and high school students, located on the West Campus of Arizona State University. A commencing investigation of pre-established educational methods and practices evaluated compulsory academic values, concepts, theories, and principles. External examination of scientific studies and literature regarding the functions of nature within a scholastic setting assisted in the process of developing a novel educational paradigm. A study of game play and its relation to the learning process also proved integral to the development of a new archetype. A hypothesis was developed, asserting that a nature-centric educational model was ideal. Architectural case studies were assessed to determine applicable qualities for a new nature-architecture integration. An architectural manifestation was tested within the program of the Herberger Young Scholars Academy and through the ideal functions of nature within an academic context.
ContributorsTate, Caroline Elizabeth (Author) / Underwood, Max (Thesis director) / Hejduk, Renata (Committee member) / De Jarnett, Mitchell (Committee member) / The Design School (Contributor) / W. P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137652-Thumbnail Image.png
Description
With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning

With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning and emotion is explored. Pre- and post-tests were given to children attending a week-long summer freshwater ecology camp; their knowledge of and emotional connection to different ecological concepts were measured. Two separate ecosystems were tested \u2014 a freshwater ecosystem that was taught over the course of the week, and a marine ecosystem for comparison. Increases in knowledge and emotion were seen in every freshwater ecosystem concept. Additionally, the knowledge and emotion scores were correlated, suggesting a positive relationship between them. The marine ecosystem did not show improvements in concrete knowledge, but showed increases in abstract learning, indicating that the abstract concepts learned about the freshwater ecosystem were able to transfer to the marine. Overall results show the ability of a hands-on learning experience to foster an emotional connection between a child and the subject matter. However, long-term studies are needed to track the relationship between children and their knowledge of and emotional connection to the subject matter.
ContributorsMossler, Max Vaughn (Author) / Pearson, David (Thesis director) / Smith, Andrew (Committee member) / Berkowitz, Alan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2013-05
135913-Thumbnail Image.png
Description
Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem

Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem of drought in the Sonoran Desert was developed, piloted, and evaluated. The framework of each lesson combined the core competencies and the 5Es pedagogy (engage, explore, explain, elaborate, and evaluate). Two lessons were successfully piloted in two seventh grade middle-school science classes in Phoenix, Arizona. Topics addressed were the water cycle, types of drought, water systems, and mitigation methods. Evaluation determined a high level of student engagement. Post-pilot teacher questionnaires revealed a high degree of support for inclusion of sustainability education and core competencies addressing drought in future opportunities. It is concluded that lessons in the future can adopt the core competences of sustainability with the support of educators in Arizona.
ContributorsComeaux, Victoria (Co-author) / Harding, Bridget (Co-author) / Larson, Kelli L. (Thesis director) / Frisk Redman, Erin (Committee member) / School of Sustainability (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135919-Thumbnail Image.png
Description
The changing student demographics of schools in the US offer opportunities to introduce new curriculum. Schools are seeing an increase in the diversity within classrooms, including an increase in the amount of students from other countries. This project discusses the potential benefits of introducing four specific Global Young Adult novels

The changing student demographics of schools in the US offer opportunities to introduce new curriculum. Schools are seeing an increase in the diversity within classrooms, including an increase in the amount of students from other countries. This project discusses the potential benefits of introducing four specific Global Young Adult novels to high school classrooms in hopes of achieving a more culturally-responsive classroom. These novels include: Purple Hibiscus by Chimamanda Ngozi Adichie, Now Is the Time for Running by Michael Williams, Climbing the Stairs by Padma Venkatraman, and The Red Umbrella by Christina Gonzalez. As there are many arguments for Global YA Literature, this project focuses on the themes of the novels and the implications for the classroom. From a thematic approach, these four novels offer insight into the fluid nature of culture, as the characters must balance different identities as they move around the world. These themes can be used to create dialogue between students on cultural identity and how cultural surroundings affect their identities. These novels can also give students a more empathetic approach as they encounter cultural differences, creating a better community within the classroom.
ContributorsBurbank, Nicole Lauren (Author) / Durand, Sybil (Thesis director) / Clark-Oakes, Angela (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147634-Thumbnail Image.png
Description

An exploration of how architecture can react to American hyper-consumption of clothing products. With the goal to raise public awareness and create systemic, sustainable change in the fashion industry, this project synthesizes each part of manufacturing, including production, consumption, and post consumption, into one local campus. By bringing manufacturing back

An exploration of how architecture can react to American hyper-consumption of clothing products. With the goal to raise public awareness and create systemic, sustainable change in the fashion industry, this project synthesizes each part of manufacturing, including production, consumption, and post consumption, into one local campus. By bringing manufacturing back into the daily rhythms of an urban context and combining a prototypical mix of fashion related programs, ethically minded consumers are formed.

ContributorsMarshall, Jordan (Author) / Murff, Warren (Thesis director) / Smith, Brie (Committee member) / Hejduk, Renata (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This ArcGIS StoryMap provides a comprehensive guide for readers who are internet on starting a school garden programs. The map covers a brief overview of school gardens, their benefits, barriers to success, and recourses to ensure longevity and sustainability of future garden programs.

ContributorsPeffley, Zoller (Author) / Zuiker, Steven (Thesis director) / McGregor, Joan (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor)
Created2023-05
131149-Thumbnail Image.png
Description
As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability

As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability education, inspiring student investment in local communities and stewardship of the landscape. Through narrative descriptions of interviews held with professors, program coordinators, and deans from nine sustainability undergraduate programs across the United States, I explore in this thesis how different educators and institutions adopt place-based pedagogy within sustainability curriculum and institutional practice. In observation of these interviews, I name three factors of difference – physical and social setting, academic ethos, and institution size – as axes around which place is incorporated in sustainability instruction and within the college as a whole. Finally, I give general recommendations for incorporating place in sustainability instruction as well as certain creative and place-oriented assignment structures discussed in the interviews.
ContributorsOrrick, Kayla M (Author) / Hirt, Paul (Thesis director) / Bernier, Andrew (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading, but in problem solving as well.

“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading, but in problem solving as well. The 2012 Program for International Student Assessment (PISA) test examined 44 countries’ students’ problem-solving abilities — American students landed just above the average, but they still scored below many other developed countries, including Britain, Singapore, Korea, Japan, China and Canada” (Bertram, 2015).
Lack of quality education, busy households, and limited time and money can all be factors of why children are not academically supported. What would it look like if children had access to a tool that helped them catch up if they fall behind? A tool that empowers children to solve academic and real-world world problems will help strengthen different cognitive and behavioral skills as well as create a more personalized educational experience, inside the classroom and out. This tool can be applied to the way we look at our formal academic education to help build new, creative problem solving strategies that are tailored to each student’s preferred ways of learning.

Proposed Research

My research is driven by the following question:

How do we create a tool for students that will help them maneuver busy and over-populated classrooms to help them learn better?

I am interested in studying the ways in which children in the age range of 11-14 play, specifically through video gaming, and using this influence to promote learning. By using children’s gaming interests to inspire education, they will be more inclined to participate in learning activities in the classroom. By exploring and observing how children problem solve in gaming, I will be able to pull techniques and methods from play in order to enhance critical learning. This project will begin in mid-May, and will continue after my thesis defense when I take this project into the workforce and am applying for jobs.
Methods
I will be taking a mixed methods approach to my research by using a combination of:
Qualitative methods: Observational data will be collected in many ways including but not limited to sketches, photography, writing, and film. After gathering base-level observational data I plan to use this, as well as my prototypes from the early phases of my product’s life to create a study to better understand users’ preferences with my product. This will include different colors, ergonomic shapes, part lines, and more to allow for a large range of feedback.
Surveys and interviews: I wish to interview and survey policymakers, educators, students, and other stakeholders invested in education to better understand their needs, in order to ensure that my product is feasible in the eyes of policymakers. It is important that my specific product not only serve as a tool for students, but also for teachers to learn as well. Making this product as something practical and scalable is important in terms of feasibility.
Thematic groups: Observing user groups interacting with my product/project will help me adjust to my general end goals.

Actionable Insights

After gathering data from interviews, surveys, observations, and product feedback, I plan to analyze this data and make sufficient changes to my project in order to better serve the community in which I am trying to benefit. Doing this will help my project be more effective and impactful.

Limitations will depend on rules on photography and interviewing. The timeline of the analysis of the data collected will be similar to the timeline provided for the senior studio class for traditional industrial design students.
Expected Outcomes
The proposed research will strengthen my design skills and expand my knowledge as a design student interested in the user experience, wellbeing, access to arts education, and much more. I will have a final outcome of a physical product that will be used as an initiative to help children studying STEM subjects to find new, creative, and different ways of solving problems.
Timeline
As I will be doing this project in congruency with my senior industrial design studio, my schedule has been roughly predetermined.
April-August
Literature review and preliminary research will be taken care of during this part of my thesis project. I will also be contacting people I would like to see be involved in this project during this time.
August-December
Research
1. Exploration
a. Assign01: Mind map + Visit the world
b. Assign02: Observations + Interviews
2. Making sense of the data + Concepts
a. Assign03: POG + Ideation
b. Assign04: Concept Evaluation + Selection
c. Partner School Determined
3. Concept Direction + Customer Validation + Research Summary
a. Assign05: Hard device and Screen Mock-ups + Customer Feedback
b. Assign06: Mid-term presentation of research + Life-Cycle
Design
1. Form Development + Drivers
a. Assign07: Design Language + Out into the World
b. Assign08: Product Details + Function
c. Wire frames Due
2. Study Models + CAD Model
a. Assign09: Refined 3D Study Model
b. Assign10: CAD Model + Tech Drawings
c. Running Step-Through
3. Design Validation + Refinement
a. Assign11: Persona Check +CMF + Features & Benefits
4. Storyboard Development + Visual Poster
a. Assign12: Storyboard + Life of Product
b. Assign13: Poster + Presentation Outline
c. Assign14: Product Animation
5. Final Presentation
a. Assign15: Process Book
b. Assign16: Public presentation
December-January
This is the time I will use to have my code built out a bit more. I will come back into the next semester with a code that functions in my form that I have decided on.
January-May
This time will be used to run user tests on my product, and make desired changes to it in order to fully iterate and design my concept well and with data-driven desires.
Meetings
I plan to meet with my studio professor, Dosun Shin, once every two weeks to discuss how my project is progressing. My second committee member will be Dean Bacalzo. My committee will be contacted on a monthly basis by way of email with updates on my project’s process. From there I will be able to ask for suggestions and schedule meeting times to further discuss my project.
























References
Educational Ecosystems for Societal Transformation

Why STEM? Success Starts With Critical Thinking, Problem-Solving Skills
https://www.wired.com/insights/2014/06/stem-success-starts-critical-thinking-problem-solving-skills/
Unlocking Creativity: Teaching across the Curriculum

How the Founder of All Girls Code Is Shaking Up STEM in the Middle East
https://www.jnj.com/personal-stories/the-road-to-devex-aya-mouallem-discusses-her-stem-program-for-girls

Case Study: A game for conflict-affected youth to learn and grow
https://blogs.unity3d.com/2018/06/13/case-study-a-game-for-conflict-affected-youth-to-learn-and-grow/

Vice Charter School vs Public School
https://www.theatlantic.com/science/archive/2016/10/the-weak-evidence-behind-brain-training-games/502559/

Think brain games make you smarter? Think again, FSU researchers sayhttp:/
ews.fsu.edu
ews/health-medicine/2017/04/17/think-brain-games-make-smarter-think-fsu-researchers-say/
About STEAM Edu
https://steamedu.com/about-us/
Brain Games Don’t Work
http://fortune.com/2017/07/10/brain-games-research-lumosity/

Pip is a portable gaming device that teaches children to codehttps://www.dezeen.com/2017/12/05/pip-portable-gaming-device-teaches-children-coding-technology/
Latest STEM learning kits for kids combine technology and play doughhttps://www.dezeen.com/2017/06/06/stem-learning-kits-kids-combine-technology-play-dough-universe-tech-will-save-us-design/
3 Ways To Design Toys That Boost Kids’ Creativityhttps://www.fastcodesign.com/1669691/3-ways-to-design-toys-that-boost-kids-creativity
Plobot for STEAM
https://www.behance.net/gallery/45476023/Plobot

Global Education Futures Report
http://futuref.org/educationfutures
Xbox Adaptive Controllerhttps://www.xbox.com/en-US/xbox-one/accessories/controllers/xbox-adaptive-controller
2018 US Video Game Market Predictionshttps://www.npd.com/wps/portal
pd/us/blog/2018/2018-us-video-game-market-predictions/
Kids and Violence in the Media
https://www.parenting.com/article/media-violence-children
YouTubers Talk About Their Favorite Games
https://www.youtube.com/watch?v=D3wFuqzzwdk

https://www.ideo.com/case-study/giving-ed-tech-entrepreneurs-a-window-into-the-classroom
https://www.ideo.com/case-study/for-kids-a-new-tactile-way-to-learn-coding
https://www.youtube.com/watch?v=uwskPyYEH2I&feature=youtu.be
https://www.kerbalspaceprogram.com/en/?page_id=11
ContributorsStrasser, Grace Bailey (Author) / Wilkymacky, Abby (Thesis director) / Shin, Dosun (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05