Matching Items (28)

Filtering by

Clear all filters

135380-Thumbnail Image.png
Description

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.

ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135743-Thumbnail Image.png
Description

The two authors completed the entirety of their schooling within the United States, from preschool to university. Both authors experienced loss of interest towards their education each successive year and assumed the nature of learning and education was to blame. The two students took a class on the Kashiwagi Information

The two authors completed the entirety of their schooling within the United States, from preschool to university. Both authors experienced loss of interest towards their education each successive year and assumed the nature of learning and education was to blame. The two students took a class on the Kashiwagi Information Measurement Theory their second years at Arizona State University and applied the concepts taught in that class to past experiences in the United States education system to determine the cause behind their waning interest in their education. Using KSM principles the authors identified that the environment produced by and ineffectual and inefficient educational system is what resulted in their, and the majority of their peers, growing dissatisfaction in their education. A negative correlation was found between GPA and control. As the control in a students environment increased, their GPA decreased. The data collected in this thesis also supports the conclusions that as a student is exposed to a high stress environment, their GPA and average amount of sleep per night decrease.

ContributorsKulanathan, Shivaan (Co-author) / Westlake, Kyle (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Gunnoe, Jake (Committee member) / Computer Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137392-Thumbnail Image.png
Description

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for this paper indicates that there is value in creating these online tools but that there is value in maintaining an in-person component to these services. Based on this, a system which provides personalized, easily-accessible, simple access to these services is proposed. Designs for user-centered online-tools that provides access to and interaction with tutoring centers and review sessions are described and prototypes are developed to demonstrate the application of design principles for online tools for academic services.

ContributorsBerk, Nicholas Robert (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
135919-Thumbnail Image.png
Description

The changing student demographics of schools in the US offer opportunities to introduce new curriculum. Schools are seeing an increase in the diversity within classrooms, including an increase in the amount of students from other countries. This project discusses the potential benefits of introducing four specific Global Young Adult novels

The changing student demographics of schools in the US offer opportunities to introduce new curriculum. Schools are seeing an increase in the diversity within classrooms, including an increase in the amount of students from other countries. This project discusses the potential benefits of introducing four specific Global Young Adult novels to high school classrooms in hopes of achieving a more culturally-responsive classroom. These novels include: Purple Hibiscus by Chimamanda Ngozi Adichie, Now Is the Time for Running by Michael Williams, Climbing the Stairs by Padma Venkatraman, and The Red Umbrella by Christina Gonzalez. As there are many arguments for Global YA Literature, this project focuses on the themes of the novels and the implications for the classroom. From a thematic approach, these four novels offer insight into the fluid nature of culture, as the characters must balance different identities as they move around the world. These themes can be used to create dialogue between students on cultural identity and how cultural surroundings affect their identities. These novels can also give students a more empathetic approach as they encounter cultural differences, creating a better community within the classroom.

ContributorsBurbank, Nicole Lauren (Author) / Durand, Sybil (Thesis director) / Clark-Oakes, Angela (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135981-Thumbnail Image.png
Description

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.

ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136179-Thumbnail Image.png
Description

CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the

CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the educational experience of today's student by creating a space for collaborative inquiry as well as illuminating the opportunities of self and group learning through online collaboration. The features of CourseKarma foster this student-driven environment. The main focus is on a news-feed and Question and Answer component that provides a space for students to share instant updates as well ask and answer questions of the community. The community can be as broad as the entire ASU student body, as specific as students in BIO155, or even more targeted via specific subjects and or skills. CourseKarma also provides reputation points, which are the sum of all of their votes received, identifying the individual's level and or ranking in each subject or class. This not only gamifies the usual day-to-day learning environment, but it also provides an in-depth analysis of the individual's skills, accomplishments, and knowledge. The community is also able to input and utilize course and professor descriptions/feedback. This will be in a review format providing the students an opportunity to share and give feedback on their experience as well as providing incoming students the opportunity to be prepared for their future classes. All of the student's contributions and collaborative activity within CourseKarma is displayed on their personal profile creating a timeline of their academic achievements. The application was created using modern web programming technologies such as AngualrJS, Javascript, jQuery, Bootstrap, HTML5, CSS3 for the styling and front-end development, Mustache.js for client side templating, and Firebase AngularFire as the back-end and NoSQL database. Other technologies such as Pivitol Tracker was used for project management and user story generation, as well as, Github for version control management and repository creation. Object-oreinted programming concepts were heavily present in the creation of the various data structures, as well as, a voting algorithm was used to manage voting of specific posts. Down the road, CourseKarma could even be a necessary add-on within LinkedIn or Facebook that provides a quick yet extremely in-depth look at an individuals' education, skills, and potential to learn \u2014 based all on their actual contribution to their academic community rather than just a text they wrote up.

ContributorsCho, Sungjae (Author) / Mayron, Liam (Thesis director) / Lobock, Alan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136360-Thumbnail Image.png
Description

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.

ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
Description

The purpose of this research thesis paper is to provide further insight into the development of extended reality (XR), augmented reality (AR), and virtual reality (VR) technologies within the educational space and survey how well they are received as well as whether or not they can provide additional learning benefit

The purpose of this research thesis paper is to provide further insight into the development of extended reality (XR), augmented reality (AR), and virtual reality (VR) technologies within the educational space and survey how well they are received as well as whether or not they can provide additional learning benefit in regards to other learning mediums such as reading textbooks, watching videos on the subject matter, and other such more traditional mediums. The research conducted consisted of a collaborative effort alongside the School of Biological and Health Systems Engineering (SBHSE) personnel and using their provided resources in order to generate a framework with the aforementioned technology, to aid in the development of a web-based XR system which will serve primarily as a means for SBHSE students at Arizona State University (ASU) to enhance their learning experience when it comes to topics such as anatomy and physiology of the human body, with the potential of extending this technology towards other subject matters as well, such as other STEM-related fields. Information about the initial research which included an analysis of the pertinent readings that support a benefit to using XR technology as a means to deliver course content is what is first focused on throughout this document. Then, the process that went into the design and development of the base framework that was in joint collaboration with the SBHSE will be covered. And, to conclude, a case study to generate applicable data to support the argument is covered as well as the results from it, which presented a potential for a future development plan and next steps plan once the developed materials and research are handed off.

ContributorsMihaylov, Dimitri (Author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Farzam, Maziar (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
164849-Thumbnail Image.png
Description

Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether

Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether a student is capable of fixing their own mistakes. Logs were collected from previous FACT trials with middle school math teachers and students. The data was converted to time series sequences for deep learning, and ordinary features were extracted for statistical machine learning. Ultimately, deep learning models attained an accuracy of 60%, while tree-based methods attained an accuracy of 65%, showing that some correlation, although small, exists between how a student fixes their mistakes and whether their correction is correct.

ContributorsZhou, David (Author) / VanLehn, Kurt (Thesis director) / Wetzel, Jon (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05