Matching Items (3)
Filtering by

Clear all filters

156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
ContributorsRaj, Vaishnavi (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2018
157482-Thumbnail Image.png
Description
Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.
ContributorsDay, Melissa (Author) / Gonzalez-Sanchez, Javier (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
158297-Thumbnail Image.png
Description
Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home assistants. It is hard to adopt them for computer-controlled systems

Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home assistants. It is hard to adopt them for computer-controlled systems due to the numerous complexities involved with their implementation in varying fields. The main challenge is the grounding of natural language base terms into the underlying system's primitives. The existing systems that do use natural language interfaces are specific to one problem domain only.

In this thesis, a domain-agnostic framework that creates natural language interfaces for computer-controlled systems has been developed by making the mapping between the language constructs and the system primitives customizable. The framework employs ontologies built using OWL (Web Ontology Language) for knowledge representation purposes and machine learning models for language processing tasks. It has been evaluated within a simulation environment consisting of objects and a robot. This environment has been deployed as a web application, providing anonymous user testing for evaluation, and generating training data for machine learning components. Performance evaluation has been done on metrics such as time taken for a task or the number of instructions given by the user to the robot to accomplish a task. Additionally, the framework has been used to create a natural language interface for a database system to demonstrate its domain independence.
ContributorsTiwari, Sarthak (Author) / Bansal, Ajay (Thesis advisor) / Mehlhase, Alexandra (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2020