Matching Items (37)
Filtering by

Clear all filters

135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135430-Thumbnail Image.png
Description
Social entrepreneurship has received a great deal of attention in recent years. Scholars constantly debate of the meaning of the term and the direction of the field. This paper explores literature written between the years 2010 \u2014 2015 in an effort to understand the current state of social entrepreneurship and

Social entrepreneurship has received a great deal of attention in recent years. Scholars constantly debate of the meaning of the term and the direction of the field. This paper explores literature written between the years 2010 \u2014 2015 in an effort to understand the current state of social entrepreneurship and gain insight as to the direction it is headed. This paper looks at definitions, characteristics, geographical differences, legal designations, and major themes such as social enterprise, social innovation, & social value as well as the implications for performance measures in an attempt to understand the broad concept that is social entrepreneurship.
ContributorsTalarico, Anthony (Author) / Shockley, Gordon (Thesis director) / Hayter, Christopher (Committee member) / Department of Management (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136575-Thumbnail Image.png
Description
Challenging project-based learning, this 3-part thesis analyzes the current environment of business and university relationships, examines an experimental course at W.P. Carey and proposes a unique, execution-based teaching strategy. The outcome is a sustainable and mutually beneficial relationship between business and universities that allows each to operate at its maximum

Challenging project-based learning, this 3-part thesis analyzes the current environment of business and university relationships, examines an experimental course at W.P. Carey and proposes a unique, execution-based teaching strategy. The outcome is a sustainable and mutually beneficial relationship between business and universities that allows each to operate at its maximum potential while bridging the gap for students between classroom theory and its application in the real world of business.
ContributorsMccaleb, Emily Anne (Author) / Peck, Sidnee (Thesis director) / Hillman, Amy (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2015-05
136279-Thumbnail Image.png
Description
There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students

There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students from the graduating class of 2011 in a rural area of Arizona. Results from the interviews found that the rural students consider the perception of importance of a college degree, parental influence, and self-discovery as important factors in the decision making process. In addition, not all non-college-going students felt that college was necessary for a better quality of living, but did express desire for more development opportunities while in high school. The findings resulted in the following recommendations for local educators to help students better navigate the college decision process: teach parents how to have more meaningful conversations, provide step-by-step assistance to students about the college application process, and provide more opportunities for self/educational/career development to students.
ContributorsCrow, Ellyse Diann (Author) / Wang, Lili (Thesis director) / Hollin, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / School of Community Resources and Development (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2015-05
136179-Thumbnail Image.png
Description
CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the

CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the educational experience of today's student by creating a space for collaborative inquiry as well as illuminating the opportunities of self and group learning through online collaboration. The features of CourseKarma foster this student-driven environment. The main focus is on a news-feed and Question and Answer component that provides a space for students to share instant updates as well ask and answer questions of the community. The community can be as broad as the entire ASU student body, as specific as students in BIO155, or even more targeted via specific subjects and or skills. CourseKarma also provides reputation points, which are the sum of all of their votes received, identifying the individual's level and or ranking in each subject or class. This not only gamifies the usual day-to-day learning environment, but it also provides an in-depth analysis of the individual's skills, accomplishments, and knowledge. The community is also able to input and utilize course and professor descriptions/feedback. This will be in a review format providing the students an opportunity to share and give feedback on their experience as well as providing incoming students the opportunity to be prepared for their future classes. All of the student's contributions and collaborative activity within CourseKarma is displayed on their personal profile creating a timeline of their academic achievements. The application was created using modern web programming technologies such as AngualrJS, Javascript, jQuery, Bootstrap, HTML5, CSS3 for the styling and front-end development, Mustache.js for client side templating, and Firebase AngularFire as the back-end and NoSQL database. Other technologies such as Pivitol Tracker was used for project management and user story generation, as well as, Github for version control management and repository creation. Object-oreinted programming concepts were heavily present in the creation of the various data structures, as well as, a voting algorithm was used to manage voting of specific posts. Down the road, CourseKarma could even be a necessary add-on within LinkedIn or Facebook that provides a quick yet extremely in-depth look at an individuals' education, skills, and potential to learn \u2014 based all on their actual contribution to their academic community rather than just a text they wrote up.
ContributorsCho, Sungjae (Author) / Mayron, Liam (Thesis director) / Lobock, Alan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137392-Thumbnail Image.png
Description
Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for this paper indicates that there is value in creating these online tools but that there is value in maintaining an in-person component to these services. Based on this, a system which provides personalized, easily-accessible, simple access to these services is proposed. Designs for user-centered online-tools that provides access to and interaction with tutoring centers and review sessions are described and prototypes are developed to demonstrate the application of design principles for online tools for academic services.
ContributorsBerk, Nicholas Robert (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
137038-Thumbnail Image.png
Description
By distributing a survey to students and professors, this study investigates the perceptions of online education at Arizona State University and uses statistical analysis to establish connections between the characteristics of individuals and the opinions that they have about online education. In relation to online education, this study investigates the

By distributing a survey to students and professors, this study investigates the perceptions of online education at Arizona State University and uses statistical analysis to establish connections between the characteristics of individuals and the opinions that they have about online education. In relation to online education, this study investigates the topics of academic dishonesty, learning effectiveness, increasing diversity in the university, the effect on reputation, the academic rigor of courses, societal obligations, and overall opinions of online education as a whole. The aggregate results of these surveys were then compared to the categorized results of students and professors, students with varied levels of GPA, students with varied exposure to online classes, and students with varied majors of study. These comparisons were used to establish statistical correlations between an individual's occupation in a specific category and the types of opinions they have regarding online education.
ContributorsZehring, Timothy J. (Author) / Nosky, Richard (Thesis director) / LePine, Marcie (Committee member) / Barrett, The Honors College (Contributor) / Department of Management (Contributor) / Hugh Downs School of Human Communication (Contributor)
Created2014-05
137007-Thumbnail Image.png
Description
This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented,

This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented, officials can improve the quality of education across the country and create classroom environments conducive to knowledge acquisition and skill development.
The research begins with the history of standards, starting with traditional outcome-based standards. It then delves into the Partnership for 21st Century Skills (P21), which highlights the type of skills 21st century students are expected to develop and master by the time they enter college and careers. Next, it explores the hot topic of Education to this date: Common Core State Standards. In the midst of educational reform, these standards seek to add consistency across the nation in regards to what students should know at each grade level and also encourage teaching of the 21st century skills. This section briefly details the content of Common Core English Language Arts and Mathematics standards.
After summarizing P21 and Common Core, this report shifts into its focused 21st century skill: collaboration. As one of the 4 C’s that P21 and Common Core emphasize in their standards, it is imperative to research critical elements of collaboration as they relate to groups and teams of all ages. Even more specifically, collaboration is a practice that is becoming more and more standard in business across all industries, so it is a skill that is highly in demand for students to acquire. In regards to collaboration, Executive Vice President of Verizon, Bob Mudge, states, “companies are able to innovate much more quickly and even create solutions to problems that may not be prevalent issues yet” (Mudge 1). The standards expect that students will be prepared to collaborate in college and careers, so key elements of collaboration in those settings—in-person or virtual—need apply or be simplified to K-6 collaborative environments. This section also analyzes a case study experiment on young children about how technology functionality and design enables, encourages, or enforces collaboration.
Next, this thesis reviews three case studies that represent evolution in our understanding of technology’s role as a support system in teaching and learning collaboration. The first case study shows how simple handheld devices assisted in correcting weaknesses in a variety of collaborative and organizational skills. The second study utilizes interactive tabletop technology to realize the idea of tracking collaborative ability in real time through synchronized audio and touch recording. Finally, researchers assess the effectiveness of one student to one device (1:1) initiatives by gathering student-reported data before and after the program’s implementation, which largely speak to the direction of many schools’ technology strategies.
To supplement all of the secondary research above, the researcher of this thesis conducted interviews with nine K-6 teachers to gather their insights on collaboration and how they facilitate it. They explain how they use technology in their classroom to enhance the learning environment. Additionally, they give opinions on what could be done to make collaboration more easily taught and facilitated, as well as what would better develop their students’ collaborative skills.
The compilation of this information then leads to implications of what needs to be present, from a technology standpoint, to more effectively teach collaborative skills to our schoolchildren. This includes a brief industry analysis of a program that already exists, as well as recommendations for new technology that considers the research conducted throughout the paper. Another implication addressed centers on the instruction and facilitation of technology and the digital divide that can result from varying competency among teachers, which brings to light the need for proper technology development programs for educators.
ContributorsPetrovich, Nicholas Hugh (Author) / Ostrom, Amy (Thesis director) / Ostrom, Lonnie (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Management (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05
134769-Thumbnail Image.png
Description
In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs

In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs inherent to all modern day languages by allowing users to write programs visually as opposed to textually. By bypassing the need to learn syntax students can focus on the thinking behind developing an algorithm and see immediate results that help generate excitement for the field and reduce disinterest due to startup complexity and burnout. The Introduction to Engineering course at Arizona State University supports this approach by teaching students the basics of autonomous maze traversing algorithms and using ASU VIPLE, a Visual Programming Language developed to connect with and direct real-world robots. However, some startup time is needed to learn how to interface with these robots using ASU VIPLE. That is why the HTML5 Autonomous Robot Web Simulator was created -- by encouraging students to use the simulator the problem solving behind autonomous maze traversing algorithms can be introduced more quickly and with immediate affirmation. Our goal was to improve this simulator and add features so that the simulator could be accessed and used for a more wide variety of introductory Computer Science lessons. Features scattered across past implementations of robotic simulators were aggregated in a cross platform solution. Upon initial development, a classroom test group revealed usability concerns and a demonstration of students' mental models. Mean time for task completion was 8.1min - compared to 2min for the authors. The simulator was updated in response to test group feedback and new instructor requirements. The new implementation reduces programming overhead while maintaining a learning environment with support for even the most complex applications.
ContributorsRodewald, Spencer (Co-author, Co-author) / Patel, Ankit (Co-author) / Chen, Yinong (Thesis director) / Chattin, Linda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12