Matching Items (9)
Filtering by

Clear all filters

135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
ContributorsStrong, Paul Andrew (Co-author) / Shah, Pankti (Co-author) / Huerta, Mark (Co-author) / Henderson, Mark (Thesis director) / El Asmar, Mounir (Committee member) / LaBelle, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137052-Thumbnail Image.png
Description
The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi,

The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi, PhD. The class package is designed to be published over an online platform so students and professors from various institutions can access the material. Currently the platform is in its final stages of development and is slated to go live on July of 2014. The future development of the package will be geared towards facilitating interdisciplinary collaboration between institutions based off of course concepts.
ContributorsGunnoe, Jake Alan (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Del E. Webb Construction (Contributor)
Created2014-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133280-Thumbnail Image.png
Description
This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering

This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering and its relation to academic education is examined. Next, program and project overviews of both the capstone senior design course and the InnovationSpace are detailed, followed by a comparison of the two course's curriculum. Finally, key differences are highlighted, and suggestions introduced that might serve to improve both courses in the future. The senior design capstone course was found to lack accountability and diversity leading to a lack of innovative solutions. However, the course simultaneously succeeded in maintaining wellaccepted traditional engineer practices and documentation. The InnovationSpace program on the other hand provides accountability, diversity, and modern approaches to product development.
ContributorsKennedy, Patrick Bernales (Author) / Kuhn, Anthony (Thesis director) / Hedges, Craig (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148426-Thumbnail Image.png
Description

The purpose of this study was to bring new information to the field of education research on<br/>graduation rates and school programming. Research on graduation rates and the effects of school<br/>programs exist, however there is not an abundance of research aimed specifically at Title I high<br/>schools. The goal was to find

The purpose of this study was to bring new information to the field of education research on<br/>graduation rates and school programming. Research on graduation rates and the effects of school<br/>programs exist, however there is not an abundance of research aimed specifically at Title I high<br/>schools. The goal was to find what school characteristics might impact graduation rates in this<br/>population. The thesis focused on Title I high schools in the Phoenix Union District with a<br/>graduating 2019 class of at least 250 students. This limited the effect of variability (school size,<br/>location, socioeconomic status). To research this topic, school characteristics were selected<br/>including course rigor, mentor programs, and college prep programs, as well as specific schools.<br/>To obtain the information, multiple sources were used including the Arizona Department of<br/>Education website, school websites, and school administrators/staff. The research revealed that<br/>the effect of course rigor, college prep programs, and mentorship on graduation rates in Phoenix<br/>Union High Schools is not apparent. Further research should be conducted into other possible<br/>causes for the gaps in graduation rates between the Title I high schools in this district. Future<br/>research on ELL students and programs in the Phoenix Union district and their effectiveness or<br/>lack thereof is also recommended. The research shows that this large demographic negatively<br/>correlates with the overall graduation rates at the six schools researched.

ContributorsSmith, Keegan Brett (Co-author) / Mora, Marilyn (Co-author) / Kappes, Janelle (Thesis director) / Panneton, Teresa (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132162-Thumbnail Image.png
Description
In a society that is becoming more technologically driven, it is important to have people to design, test, and build new things in order for society to progress. This is oftentimes the role of an engineer. However, engineering school is not easy, and engineering students don’t always make it all

In a society that is becoming more technologically driven, it is important to have people to design, test, and build new things in order for society to progress. This is oftentimes the role of an engineer. However, engineering school is not easy, and engineering students don’t always make it all the way through school to get an engineering job. This thesis is an in-depth analysis of an engineering student’s path - from choosing engineering as a major to ultimately transitioning into a full-time engineering job. It will do this by covering (1) what engineering is and what career opportunities exist within the discipline, (2) common pitfalls that students may encounter while going through engineering school, (3) how to get an engineering job in industry, and (4) how to appropriately transition into an industry job using the skills from engineering school. While talking about what engineering is and what career opportunities exist, this thesis will discuss engineering as a profession, the ABET accreditation board, and careers in industry vs academia. As part of common pitfalls that engineering students face, this thesis will discuss tenure track, theory vs reality, cooperative learning, and misconceptions about engineering. In order to talk about how to get an industry job, this thesis will discuss the impact of grades, relevant experience, communication, personal branding, and industry options. Finally, while talking about effectively transitioning into industry, this thesis will discuss understanding the skills gained from engineering school, the different roles in industry, and how to appropriately apply those skills. Ultimately this thesis aims to be a resource for students interested in engineering so that they can understand how to successfully make it through school and move into the work force effectively.
ContributorsJordan, Arminta Claire (Author) / Takahashi, Timothy (Thesis director) / Zhu, Haolin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05