Matching Items (45)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This research looks at a group of students from Tumaini Children's Home in Nyeri, Kenya. The purpose of this paper is to explore why this particular group of students is so academically successful. Quantitative research was taken from the average 2013 test scores of Tumaini students who took the Kenyan

This research looks at a group of students from Tumaini Children's Home in Nyeri, Kenya. The purpose of this paper is to explore why this particular group of students is so academically successful. Quantitative research was taken from the average 2013 test scores of Tumaini students who took the Kenyan Certificate of Primary Education (KCPE) exam in comparison to the scores of students who are not residing in the orphanage. Qualitative research involves interviews from those students who live in Tumaini and interviews from adults who are closely connected to the orphanage. The purpose is to understand why the students are performing so well academically and what support they have created for themselves that allows them to do so.
ContributorsTooker, Amy Elizabeth (Author) / Puckett, Kathleen (Thesis director) / Cocchiarella, Martha (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2014-12
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136678-Thumbnail Image.png
Description
When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would

When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would be needed. RoutePlanner simply takes all that information and only presents that data to the user, that they would need at a particular time. Gas station suggestions would show when the gas tank range is going to be hit soon, and restaurant suggestions would only be shown around lunch time. The iOS app takes in the users origin and destination and provides the user the route as given by GoogleMaps, and then various stop suggestions at their given time. Each route that is obtained, is broken down into a number of steps, which are basically a connection of coordinate points. These coordinate point collections are used to point to a location at a certain distance or duration away from the origin. Given a coordinate, we query the APIs for places of interest and move to the next stop, until the end of the route.
ContributorsDamania, Harsh Abhay (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136440-Thumbnail Image.png
Description
The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly

The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly checked app category on smart devices, but weather results on these devices are often limited to raw data, canned responses, or sentence templates with numbers plugged in. The goal for this project was to build a system that could generate weather forecast text, which could then be read to a user through text-to-speech. By using methods in language generation, the system can generate weather forecast text in millions of different ways. This is all computed locally, and it covers every possible weather case. In order to generate natural weather forecast texts, the system retrieved raw weather data from a weather API and created the text through six methods: content determination, document structuring, sentence aggregation, lexical choice, referring expression generation, and text realization. Content determination is the process of deciding on what information to include in a computer generated text. The document structuring phase deals with the order and structure of the information. Sentence aggregation is the merging of similar sentences to improve readability and to reduce redundancy. Lexical choice is the process of putting words to concepts. Referring expression generation is the process of identifying objects, regions, time periods, and locations within a text. Finally text realization involves creating sentences with proper syntax, morphology, and orthography. Through these six stages, a system was developed that could generate unique weather forecast text from raw data accurately and efficiently. It was built for iOS devices with Apple's new programming language, Swift, and it will be ported to the Apple Watch when the API is fully opened to developers.
ContributorsJorgensen, Jacob Paul (Author) / Baral, Chitta (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136179-Thumbnail Image.png
Description
CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the

CourseKarma is a web application that engages students in their own learning through peer-driven social networking. The influence of technology on students is advancing faster than the school system, and a major gap still lingers between traditional learning techniques and the fast-paced, online culture of today's generation. CourseKarma enriches the educational experience of today's student by creating a space for collaborative inquiry as well as illuminating the opportunities of self and group learning through online collaboration. The features of CourseKarma foster this student-driven environment. The main focus is on a news-feed and Question and Answer component that provides a space for students to share instant updates as well ask and answer questions of the community. The community can be as broad as the entire ASU student body, as specific as students in BIO155, or even more targeted via specific subjects and or skills. CourseKarma also provides reputation points, which are the sum of all of their votes received, identifying the individual's level and or ranking in each subject or class. This not only gamifies the usual day-to-day learning environment, but it also provides an in-depth analysis of the individual's skills, accomplishments, and knowledge. The community is also able to input and utilize course and professor descriptions/feedback. This will be in a review format providing the students an opportunity to share and give feedback on their experience as well as providing incoming students the opportunity to be prepared for their future classes. All of the student's contributions and collaborative activity within CourseKarma is displayed on their personal profile creating a timeline of their academic achievements. The application was created using modern web programming technologies such as AngualrJS, Javascript, jQuery, Bootstrap, HTML5, CSS3 for the styling and front-end development, Mustache.js for client side templating, and Firebase AngularFire as the back-end and NoSQL database. Other technologies such as Pivitol Tracker was used for project management and user story generation, as well as, Github for version control management and repository creation. Object-oreinted programming concepts were heavily present in the creation of the various data structures, as well as, a voting algorithm was used to manage voting of specific posts. Down the road, CourseKarma could even be a necessary add-on within LinkedIn or Facebook that provides a quick yet extremely in-depth look at an individuals' education, skills, and potential to learn \u2014 based all on their actual contribution to their academic community rather than just a text they wrote up.
ContributorsCho, Sungjae (Author) / Mayron, Liam (Thesis director) / Lobock, Alan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137392-Thumbnail Image.png
Description
Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for this paper indicates that there is value in creating these online tools but that there is value in maintaining an in-person component to these services. Based on this, a system which provides personalized, easily-accessible, simple access to these services is proposed. Designs for user-centered online-tools that provides access to and interaction with tutoring centers and review sessions are described and prototypes are developed to demonstrate the application of design principles for online tools for academic services.
ContributorsBerk, Nicholas Robert (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
134769-Thumbnail Image.png
Description
In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs

In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs inherent to all modern day languages by allowing users to write programs visually as opposed to textually. By bypassing the need to learn syntax students can focus on the thinking behind developing an algorithm and see immediate results that help generate excitement for the field and reduce disinterest due to startup complexity and burnout. The Introduction to Engineering course at Arizona State University supports this approach by teaching students the basics of autonomous maze traversing algorithms and using ASU VIPLE, a Visual Programming Language developed to connect with and direct real-world robots. However, some startup time is needed to learn how to interface with these robots using ASU VIPLE. That is why the HTML5 Autonomous Robot Web Simulator was created -- by encouraging students to use the simulator the problem solving behind autonomous maze traversing algorithms can be introduced more quickly and with immediate affirmation. Our goal was to improve this simulator and add features so that the simulator could be accessed and used for a more wide variety of introductory Computer Science lessons. Features scattered across past implementations of robotic simulators were aggregated in a cross platform solution. Upon initial development, a classroom test group revealed usability concerns and a demonstration of students' mental models. Mean time for task completion was 8.1min - compared to 2min for the authors. The simulator was updated in response to test group feedback and new instructor requirements. The new implementation reduces programming overhead while maintaining a learning environment with support for even the most complex applications.
ContributorsRodewald, Spencer (Co-author, Co-author) / Patel, Ankit (Co-author) / Chen, Yinong (Thesis director) / Chattin, Linda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12