Matching Items (12)
Filtering by

Clear all filters

153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015
156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
ContributorsDe La Rosa, Matthew Lee (Author) / Chen, Yinong (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2018
137391-Thumbnail Image.png
Description
The purpose of this thesis is to understand peer-to-peer study habits at Arizona State University, and provide recommendations for improving these habits through online integration. This was done by researching current peer-to-peer collaboration literature, and analyzing online integration efforts. Interviews of Arizona State University students were carried out in order

The purpose of this thesis is to understand peer-to-peer study habits at Arizona State University, and provide recommendations for improving these habits through online integration. This was done by researching current peer-to-peer collaboration literature, and analyzing online integration efforts. Interviews of Arizona State University students were carried out in order to discover specific insights on study patterns at this university. The scope of this research study was further limited to freshman and sophomore engineering, mathematics, and science majors in order to mitigate the impacts of external factors. The background research and study illuminated various flaws in existing peer-to-peer collaboration tools and methods. These weaknesses were then used to design two online tools that would be incorporated into a student resource dashboard. The first tool, called "Ask a Peer", provides a question and answer forum for students. This tool differs from existing products because it provides a mobile platform for students to receive reputable and immediate responses from their classmates. The second tool, "Study Buddy Finder", can be used by students to form study partnerships. This tool is beneficial because it displays information that is essential to students deciding to work together. The thesis provides detailed designs for both modules, and provides the foundation for implementation.
ContributorsPatel, Niraj (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2013-12
137392-Thumbnail Image.png
Description
Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for this paper indicates that there is value in creating these online tools but that there is value in maintaining an in-person component to these services. Based on this, a system which provides personalized, easily-accessible, simple access to these services is proposed. Designs for user-centered online-tools that provides access to and interaction with tutoring centers and review sessions are described and prototypes are developed to demonstrate the application of design principles for online tools for academic services.
ContributorsBerk, Nicholas Robert (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
134769-Thumbnail Image.png
Description
In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs

In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs inherent to all modern day languages by allowing users to write programs visually as opposed to textually. By bypassing the need to learn syntax students can focus on the thinking behind developing an algorithm and see immediate results that help generate excitement for the field and reduce disinterest due to startup complexity and burnout. The Introduction to Engineering course at Arizona State University supports this approach by teaching students the basics of autonomous maze traversing algorithms and using ASU VIPLE, a Visual Programming Language developed to connect with and direct real-world robots. However, some startup time is needed to learn how to interface with these robots using ASU VIPLE. That is why the HTML5 Autonomous Robot Web Simulator was created -- by encouraging students to use the simulator the problem solving behind autonomous maze traversing algorithms can be introduced more quickly and with immediate affirmation. Our goal was to improve this simulator and add features so that the simulator could be accessed and used for a more wide variety of introductory Computer Science lessons. Features scattered across past implementations of robotic simulators were aggregated in a cross platform solution. Upon initial development, a classroom test group revealed usability concerns and a demonstration of students' mental models. Mean time for task completion was 8.1min - compared to 2min for the authors. The simulator was updated in response to test group feedback and new instructor requirements. The new implementation reduces programming overhead while maintaining a learning environment with support for even the most complex applications.
ContributorsRodewald, Spencer (Co-author, Co-author) / Patel, Ankit (Co-author) / Chen, Yinong (Thesis director) / Chattin, Linda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155829-Thumbnail Image.png
Description
Electronic books or eBooks have the potential to revolutionize the way humans read and learn. eBooks offer many advantages such as simplicity, ease of use, eco-friendliness, and portability. The advancement of technology has introduced many forms of multimedia objects into eBooks, which may help people learn from them. To hel

Electronic books or eBooks have the potential to revolutionize the way humans read and learn. eBooks offer many advantages such as simplicity, ease of use, eco-friendliness, and portability. The advancement of technology has introduced many forms of multimedia objects into eBooks, which may help people learn from them. To help the readers understand and comprehend a concept that is put forward by the author of an eBook, there is ongoing research involving the use of augmented reality (AR) in education. This study explores how AR and three-dimensional interactive models are integrated into eBooks to help the readers comprehend the content quickly and swiftly. It compares the reading activities of people when they experience these two visual representations within an eBook.

This study required participants to interact with some instructional material presented on an eBook and complete a learning measure. While interacting with the eBook, participants were equipped with a set of physiological devices, namely an ABM EEG headset and eye tracker during the experiment to collect biometric data that could be used to objectively measure their user experience. Fifty college students participated in this study. The data collected from each of the participants was used to analyze the reading activities of people by performing an Independent Samples t-test.
ContributorsJuluru, Kalyan Kumar (Author) / Atkinson, Robert K. (Thesis advisor) / Chen, Yinong (Thesis advisor) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2017
135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
147956-Thumbnail Image.png
Description

Music streaming services have affected the music industry from both a financial and legal standpoint. Their current business model affects stakeholders such as artists, users, and investors. These services have been scrutinized recently for their imperfect royalty distribution model. Covid-19 has made these discussions even more relevant as touring income

Music streaming services have affected the music industry from both a financial and legal standpoint. Their current business model affects stakeholders such as artists, users, and investors. These services have been scrutinized recently for their imperfect royalty distribution model. Covid-19 has made these discussions even more relevant as touring income has come to a halt for musicians and the live entertainment industry. <br/>Under the current per-stream model, it is becoming exceedingly hard for artists to make a living off of streams. This forces artists to tour heavily as well as cut corners to create what is essentially “disposable art”. Rapidly releasing multiple projects a year has become the norm for many modern artists. This paper will examine the licensing framework, royalty payout issues, and propose a solution.

ContributorsKoudssi, Zakaria Corley (Author) / Sadusky, Brian (Thesis director) / Koretz, Lora (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131233-Thumbnail Image.png
Description
Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library,

Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library, he/she would have to hand pick songs that fit the mold and create a new playlist. This is a time consuming process that may not produce the most efficient result due to human error. The objective of this project, therefore, was to develop an application to streamline this process, optimize efficiency, and fill this user need.

Song Sift is an application built using Angular that allows users to filter and sort their song library to create specific playlists using the Spotify Web API. Utilizing the audio feature data that Spotify attaches to every song in their library, users can filter their downloaded Spotify songs based on four main attributes: (1) energy (how energetic a song sounds), (2) danceability (how danceable a song is), (3) valence (how happy a song sounds), and (4) loudness (average volume of a song). Once the user has created a playlist that fits their desired genre, he/she can easily export it to their Spotify account with the click of a button.
ContributorsDiMuro, Louis (Author) / Balasooriya, Janaka (Thesis director) / Chen, Yinong (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05