Matching Items (6)
Filtering by

Clear all filters

134292-Thumbnail Image.png
Description
Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs

Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs sixteen personality types and complete a survey that asked them questions about their behavior while games playing competitively online including their preferred in-game archetype and questions about how they interact with other players online. The survey also included the Grit Scale test, which which was intended to explore players' perseverance. Nearly 700 people participated in the study and all responses were analyzed based on their Myers-Briggs' personality type. While this study revealed that Myers-Briggs' personality type alone cannot determine a player's mindset while playing online, it was found to be an indicator of how they feel about socializing with others online. The implications of these results are discussed in this paper.
ContributorsKeyvani, Kurosh (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
134430-Thumbnail Image.png
Description
Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach a new chessboard con�guration. Studies have shown that chess skill is based on memory, speci�cally, "chunks" of chess piece positions that have been previously encountered by players. However, debate exists concerning how these chunks are constructed in players' memory. These chunks could be constructed by proximity of pieces on the chessboard as well as their precise location or constructed through attack-defense relations. The primary objective of this study is to support which one is more in line with chess players' actual chess abilities based off their memory, proximity or attack/defense. This study replicates and extends an experiment conducted by McGregor and Howe (2002), which explored the argument that pieces are primed more by attack and defense relations than by proximity. Like their study, the present study examined novice and expert chess players' response times for correct and error responses by showing slides of game configurations. In addition to these metrics, the present study also incorporated an eye-tracker to measure visual attention and EEG to measure affective and cognitive states. They were added to allow the comparison of subtle and unconscious behaviors of both novices and expert chess players. Overall, most McGregor and Howe's (2002) results were replicated supporting their theory on chess expertise. This included statistically significance for skill in the error rates with the mean error rates on the piece recognition tests were 70.1% for novices and 87.9% for experts, as well as significance for the two-way interaction for relatedness and proximity with error rates of 22.4% for unrelated/far, 18.8% for related/far, 15.8% for unrelated
ear, and 29.3% for related
ear. Unfortunately, there were no statistically significance for any of the response time effects, which McGregor and Howe found for the interaction between skill and proximity. Despite eye-tracking and EEG data not either support nor confirm McGregor and Howe's theory on how chess players memorize chessboard configurations, these metrics did help build a secondary theory on how novices typically rely on proximity to approach chess and new visual problems in general. This was exemplified by the statistically significant results for short-term excitement for the two-way interaction of skill and proximity, where the largest short-term excitement score was between novices on near proximity slides. This may indicate that novices, because they may lean toward using proximity to try to recall these pieces, experience a short burst of excitement when the pieces are close to each other because they are more likely to recall these configurations.
ContributorsSeto, Christian Paul (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control grou

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control group with the use of the Elements 4D mobile application by Daqri to learn basic chemical elements and compounds. The control group learning material provided all the exact information as the application, but in the 2D form of a printed packet. It was expected the experimental group would outperform the control group and have a more enjoyable experience and higher performance. After data analysis, it was concluded that the control group outperformed the experimental group on performance and both groups has similar experiences in contradiction to the hypothesis. Once the factors that contribute to the limitations of different study duration, learning the application beforehand, and only-memorization questions are addressed, the study can be conducted again. Application improvements may also alter the future results of the study and hopefully lead to full implementation into a curriculum.
ContributorsApplegate, Garrett Charles (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134133-Thumbnail Image.png
Description
Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the

Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the actual effects of hackathons especially at the collegiate level. This makes justifying the usage of valuable time and resources to host hackathons difficult for tech companies and academic institutions. This thesis specifically examines the effects of collegiate hackathons through running a collegiate hackathon known as Desert Hacks at Arizona State University (ASU). The participants of Desert Hacks were surveyed at the start and at the end of the event to analyze the effects. The results of the survey implicate that participants have grown in base computer programming skills, inclusion in the tech community, overall confidence, and motivation for the technological field. Through these results, this study can be used to help justify the necessity of collegiate hackathons and events similar.
ContributorsLe, Peter Thuan (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description

The purpose of this research thesis paper is to provide further insight into the development of extended reality (XR), augmented reality (AR), and virtual reality (VR) technologies within the educational space and survey how well they are received as well as whether or not they can provide additional learning benefit

The purpose of this research thesis paper is to provide further insight into the development of extended reality (XR), augmented reality (AR), and virtual reality (VR) technologies within the educational space and survey how well they are received as well as whether or not they can provide additional learning benefit in regards to other learning mediums such as reading textbooks, watching videos on the subject matter, and other such more traditional mediums. The research conducted consisted of a collaborative effort alongside the School of Biological and Health Systems Engineering (SBHSE) personnel and using their provided resources in order to generate a framework with the aforementioned technology, to aid in the development of a web-based XR system which will serve primarily as a means for SBHSE students at Arizona State University (ASU) to enhance their learning experience when it comes to topics such as anatomy and physiology of the human body, with the potential of extending this technology towards other subject matters as well, such as other STEM-related fields. Information about the initial research which included an analysis of the pertinent readings that support a benefit to using XR technology as a means to deliver course content is what is first focused on throughout this document. Then, the process that went into the design and development of the base framework that was in joint collaboration with the SBHSE will be covered. And, to conclude, a case study to generate applicable data to support the argument is covered as well as the results from it, which presented a potential for a future development plan and next steps plan once the developed materials and research are handed off.

ContributorsMihaylov, Dimitri (Author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Farzam, Maziar (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05