Matching Items (20)
Filtering by

Clear all filters

149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135201-Thumbnail Image.png
Description
Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a

Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a successful instructional method exist just outside our windows. This thesis, completed in conjunction with the ADE422 architectural studio, seeks to identify the qualities of a new educational paradigm and its architectural manifestation through an exploration of nature and biophilic design. Architectural Studio IV was challenged to develop a new academic model and corresponding architectural integration for the Herberger Young Scholars Academy, an educational institution for exceptionally gifted junior high and high school students, located on the West Campus of Arizona State University. A commencing investigation of pre-established educational methods and practices evaluated compulsory academic values, concepts, theories, and principles. External examination of scientific studies and literature regarding the functions of nature within a scholastic setting assisted in the process of developing a novel educational paradigm. A study of game play and its relation to the learning process also proved integral to the development of a new archetype. A hypothesis was developed, asserting that a nature-centric educational model was ideal. Architectural case studies were assessed to determine applicable qualities for a new nature-architecture integration. An architectural manifestation was tested within the program of the Herberger Young Scholars Academy and through the ideal functions of nature within an academic context.
ContributorsTate, Caroline Elizabeth (Author) / Underwood, Max (Thesis director) / Hejduk, Renata (Committee member) / De Jarnett, Mitchell (Committee member) / The Design School (Contributor) / W. P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133586-Thumbnail Image.png
Description
Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several control and management practices, including biological control, have been implemented in these countries in the past to control the locusts and reduce their impact on crop and vegetation, however, effective long-term control and management practices will require a detail understanding of how the predominant locust species in this region responds to resource variation. Research has shown that there is strong evidence that locusts, and many other organisms, will actively balance dietary macronutrients (protein, carbohydrates, and lipids) to optimize growth, survival, and/or reproduction. A study by Cease et. al, 2017, on the dietary preferences of the Mongolian locust (Oedaleus asiaticus) showed that it prefers diets that are high in carbohydrates over diets that are high in protein, in this case locusts self-selected a 1:2 ratio of protein:carbohydrate. This and many other studies provide vital insight into the nutritional and feeding preferences of these locust species but the effects that this difference in protein: carbohydrate preferences has on growth, egg production, flight potential, and survival has yet to be fully explored, hence, this study investigates the effects that nitrogen fertilization of wheatgrass will have on the growth, egg production, survival, and flight muscle mass of the South American locust in a controlled, laboratory environment.
ContributorsManneh, Balanding (Author) / Cease, Arianne (Thesis director) / Overson, Rick (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137095-Thumbnail Image.png
Description
There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.
ContributorsGalbiati, Joseph Nicco (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137652-Thumbnail Image.png
Description
With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning

With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning and emotion is explored. Pre- and post-tests were given to children attending a week-long summer freshwater ecology camp; their knowledge of and emotional connection to different ecological concepts were measured. Two separate ecosystems were tested \u2014 a freshwater ecosystem that was taught over the course of the week, and a marine ecosystem for comparison. Increases in knowledge and emotion were seen in every freshwater ecosystem concept. Additionally, the knowledge and emotion scores were correlated, suggesting a positive relationship between them. The marine ecosystem did not show improvements in concrete knowledge, but showed increases in abstract learning, indicating that the abstract concepts learned about the freshwater ecosystem were able to transfer to the marine. Overall results show the ability of a hands-on learning experience to foster an emotional connection between a child and the subject matter. However, long-term studies are needed to track the relationship between children and their knowledge of and emotional connection to the subject matter.
ContributorsMossler, Max Vaughn (Author) / Pearson, David (Thesis director) / Smith, Andrew (Committee member) / Berkowitz, Alan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137696-Thumbnail Image.png
Description
City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as

City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as denitrification, direct plant uptake, and soil accumulation. Emergent macrophytes provide direct uptake of N and improve conditions for microbially-mediated N processing. The role of different macrophytes species, however, is less understood and has primarily been examined in mesocosm and microcosm experiments and in mesic environments. I examined the effects of community composition on N removal and processing at the whole ecosystem scale in an aridland, constructed wetland (42 ha) through: 1) quantifying above- and belowground biomass and community composition from July 2011 \u2014 November 2012 using a non-destructive allometric technique, and; 2) quantifying macrophyte N content and direct macrophyte N uptake over the 2012 growing season. Average peak biomass in July 2011 & 2012 was 2,930 g dw/m2 and 2,340 g dw/m2, respectively. Typha spp. (Typha domingensis and Typha latifolia) comprised the majority (approximately 2/3) of live aboveground biomass throughout the sampling period. No statistically significant differences were observed in macrophyte N content among the six species present, with an overall average of 1.68% N in aboveground tissues and 1.29% N in belowground tissues. Per unit area of wetland, Typha spp. retained the most N (22 g/m2); total N retained by all species was 34 g/m2. System-wide direct plant N uptake was markedly lower than N input to the system and thus represented a small portion of system N processing. Soil accumulation of N also played a minor role, leaving denitrification as the likely process responsible for the majority of system N processing. Based on a literature review, macrophyte species composition likely influences denitrification through oxygen diffusion into soils and through the quality and quantity of carbon in leaf litter. While this study and the literature indicates Typha spp. may be the best species to promote wetland N processing, other considerations (e.g., bird habitat) and conditions (e.g., type of wastewater being treated) likely make mixed stands of macrophytes preferable in many applications. Additionally, this study demonstrated the importance of urban wetlands as scientific laboratories for scientists of all ages and as excellent stepping-off points for experiments of science-policy discourse.
ContributorsWeller, Nicholas Anton (Author) / Daniel L., Childers (Thesis director) / Grimm, Nancy (Committee member) / Turnbull, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Graduate College (Contributor)
Created2013-05
135913-Thumbnail Image.png
Description
Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem

Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem of drought in the Sonoran Desert was developed, piloted, and evaluated. The framework of each lesson combined the core competencies and the 5Es pedagogy (engage, explore, explain, elaborate, and evaluate). Two lessons were successfully piloted in two seventh grade middle-school science classes in Phoenix, Arizona. Topics addressed were the water cycle, types of drought, water systems, and mitigation methods. Evaluation determined a high level of student engagement. Post-pilot teacher questionnaires revealed a high degree of support for inclusion of sustainability education and core competencies addressing drought in future opportunities. It is concluded that lessons in the future can adopt the core competences of sustainability with the support of educators in Arizona.
ContributorsComeaux, Victoria (Co-author) / Harding, Bridget (Co-author) / Larson, Kelli L. (Thesis director) / Frisk Redman, Erin (Committee member) / School of Sustainability (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135490-Thumbnail Image.png
Description
Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize

Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize crop plants. This research paper examines aspects of the nitrogen cycle within this system to determine the efficacy of nitrogen removal by plants and microbes. More specifically, the research examines (1) the microbial activity occurring in selected beds of the system, (2) the ability of hydroponic grow beds to retain inorganic nitrogen, and (3) how periodic flushing of the system affects nitrogen retention. Water data was collected in all system tanks using aquarium test strips, but water samples were collected for flow injection analysis in (1) one of the grow beds, (2) the duck pond, and (3) a control bed with no plants but filled with gravel and inoculated with the same bacteria from the grow bed. Samples were then analyzed for ammonia (NH4+-N) and combined nitrite and nitrate (NOx-N) concentrations. The results show that the treatment type (control, duck pond, or grow bed) was a significant (p<0.05) predictor of NH4+-N, NOx-N, and total inorganic nitrogen (TIN) in the porewater of the treatment beds. The grow bed was found to have 100% removal of TIN, whereas the control had 0% TIN removal (195% increase). Timing of the sample in relation to the flushing events was a moderately significant predictor of TIN, NH4+-N and NOx-N in the duck pond (p = 0.07 for TIN, p = 0.12 for NH4+-N, p = 0.11 for NOx-N), with an overall decrease in TIN after flood pulses. NH4+-N concentrations at the inlet and outlet were found to be significantly different in the grow bed (p=0.037), but not the control, and moderately significantly different (p<0.15) for NOx-N and TIN in the grow bed (p=0.072 for NOx-N, p=0.075 for TIN), but significant for the control (p=0.043). These findings show evidence of nitrification in the grow bed and control, plant presence significantly contributing to nitrogen removal in the grow bed, and some hydrologic flushing of NOx-N out of the duck pond during pump cycles.
ContributorsPanfil, Daniela Kristiina (Author) / Doucette, Sonya (Thesis director) / Palta, Monica (Committee member) / Moody, Jack (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05