Matching Items (45)
Filtering by

Clear all filters

152322-Thumbnail Image.png
Description
The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items.

The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items. 3,908 educators in a database developed over 10+ years at the world's largest education company were sent a recruiting email; 400 elementary and secondary teachers in the final sample completed the online survey containing 48 questions over a three-week deployment period in the spring of 2013. Results indicated that overall teachers believe educational research is important, that the most important purpose of research is to increase effectiveness of classroom practice, yet research is not frequently sought out during the course of practice. Teachers perceive results in research journals as the most trustworthy yet also perceive research journals the most difficult to access (relying second-most often for research via in-service trainings). These findings have implications for teachers, administrators, policy-makers, and researchers. Educational researchers should seek to address both the theoretical and the applied aspects of learning. Professional development must make explicit links between research findings and classroom strategies and tactics, and research must be made more readily available to those who are not currently seeking additional credentialing, and therefore do not individually have access to scholarly literature. Further research is needed to expand the survey sample and refine the survey instrument. Similar research with administrators in pre-K-20 settings as well as in-depth interviews would serve to investigate the "why" of many findings.
ContributorsMahoney, Shawn (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150808-Thumbnail Image.png
Description
The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this

The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this goal, the researcher conducted a four-year virtual ethnographic study that followed guidelines set forth in Hine (2000). After Hine, the study focused on understanding the complexity of the relationships between technology and social interactions among people, with a particular emphasis on investigating how participants shaped both the culture and structure of the affinity space. The format for the dissertation consists of an introduction, three core chapters that present different sets of findings, and a concluding chapter. Each of the core chapters, which can stand alone as separate studies, applies different theoretical lenses and analytic methods and uses a separate data set. The data corpus includes hundreds of thread posts, member profiles, online interview data obtained through email and personal messaging (PM), numerous screenshots, field notes, and additional artifacts, such as college coursework shared by a participant. Chapter 2 examines thread posts to understand the social support system in MTS and the language learning practices of one member who was a non-English speaker. Chapter 3 analyzes thread posts from administrative staff and users in MTS to identify patterns of interactions, with the goal of ascertaining how users contribute to the ongoing design and redesign of the site. Chapter 4 investigates user-generated tutorials to understand the nature of these instructional texts and how they are adapted to an online context. The final chapter (Chapter 5) presents conclusions about how the analyses overall represent examples of participatory learning practices that expand our understanding of 21st century learning. Finally, the chapter offers theoretical and practical implications, reflections on lessons learned, and suggestions for future research.
ContributorsLee, Yoonhee Naseef (Author) / Hayes, Elisabeth (Thesis advisor) / Gee, James (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2012
156227-Thumbnail Image.png
Description
The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college

The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college algebra and pre-calculus classes at a community college in the southwestern United States. The approximate demographics of this college as of the academic year 2016 – 2017 are as follows: 53% women, 47% men; 61% ages 24 and under, 39% 25 and over; 43% Hispanic/Latino, 40% White, 7% other. Participants listened to an approximately 9-minute video lecture on solving a logarithmic equation. There were four dependent variables: encoding as measured by a posttest – pretest difference, perceived cognitive effort, attitude, and notes-quality/quantity. The perceived cognitive effort was measured by a self-reported questionnaire. The attitude was measured by an attitude survey. The note-quality/quantity measure included three sub-measures: expected mathematical expressions, expected phrases, and a total word count. There were two independent factors: note-taking method and learner control. The note-taking method had three levels: the Learning Agenda (LA), unguided note-taking (Usual), and no notes taken. The learner control factor had two levels: pausing allowed and pausing not allowed. The LA resulted in significantly improved notes on all three sub-measures (adjusted R2 = .298). There was a significant main effect of learner control on perceived cognitive effort with higher perceived cognitive effort occurring when pausing was not allowed and notes were taken. There was a significant interaction effect of the two factors on the attitude survey measure. The trend toward an improved attitude in both of the note-taking levels of the note-taking factor when pause was allowed was reversed in the no notes level when pausing was allowed. While significant encoding did occur as measured by the posttest – pretest difference (Cohen’s d = 1.81), this measure did not reliably vary across the levels of either the note-taking method factor or the learner control factor in this study. Interpretations were in terms of cognitive load management, split-attention, instructional design, and note-taking as a sense-making opportunity.
ContributorsTarr, Julie Charlotte (Author) / Nelson, Brian (Thesis advisor) / Atkinson, Robert (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2018
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
As part of a group project, myself and four teammates created an interactive children's storybook based off of the "Young Lady's Illustrated Primer" in Neal Stephenson's novel The Diamond Age. This electronic book is meant to be read aloud by a caregiver with their child, and is designed for reading

As part of a group project, myself and four teammates created an interactive children's storybook based off of the "Young Lady's Illustrated Primer" in Neal Stephenson's novel The Diamond Age. This electronic book is meant to be read aloud by a caregiver with their child, and is designed for reading over long distances through the use of real-time voice and video calling. While one part of the team focused on building the electronic book itself and writing the program, myself and two others wrote the story and I provided illustrations. Our Primer tells the story of a young princess named Charname (short for character name) who escapes from a tower and goes on a mission to save four companions to help her on her quest. The book is meant for reader-insertion, and teaches children problem-solving, teamwork, and critical thinking skills by presenting challenges for Princess Charname to solve. The Primer borrows techniques from modern video game design, focusing heavily on interactivity and feelings of agency through offering the child choices of how to proceed, similar to choose-your-own-adventure books. If brought to market, the medium lends itself well to expanded quests and storylines for the child to explore as they learn and grow. Additionally, resources are provided for the narrator to help create an engaging experience for the child, based off of research on parent-child cooperative reading and cooperative gameplay. The final version of the Primer included a website to run the program, a book-like computer to access the program online, and three complete story segments for the child and narrator to read together.
ContributorsLax, Amelia Ann Riedel (Author) / Dove-Viebahn, Aviva (Thesis director) / Wetzel, Jon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136220-Thumbnail Image.png
Description
The ASU Page Turners is an entrepreneurial community action program founded by Chase Fitzgerald and Hannah McAtee. In 2014, a third program partner, Chloe Holmes, replaced Hannah as co-president. The ASU Page Turners program aims to enhance opportunities for the children of the Tempe/Mesa school districts through a unique one-on-one

The ASU Page Turners is an entrepreneurial community action program founded by Chase Fitzgerald and Hannah McAtee. In 2014, a third program partner, Chloe Holmes, replaced Hannah as co-president. The ASU Page Turners program aims to enhance opportunities for the children of the Tempe/Mesa school districts through a unique one-on-one weekly reading program that is designed to draw together engaged ASU Barrett students and similarly motivated second and third grade students at the Tempe Public Library. The ASU Page Turners empowers the youth of our community by growing reading confidence, vocalization, and public speaking that can serve as transformative skill sets both in and out of the classroom. This document serves as a description and appraisal of the work done to establish the program, expand its reach and success, reflect on the experiences of the primary collaborators, appraise the value of the work as seen by the Tempe Public library, and set it on a sustainable path of growth for its future with Barrett, The Honors College and the Tempe Public Library. The Page Turners community consists of thirty Barrett students and thirty second and third grade students from ASU's greater community who actively embrace our mission to cultivate their own intellectual growth in a safe and productive manner. We look for every opportunity to encourage academic development, hold ourselves accountable, and realize our potential through the work we are doing, regardless if you are the student or the teacher. We have learned that these roles regularly reverse themselves, as there is much to learn from an inquisitive child's mind.
ContributorsFitzgerald, Chase Matthew (Author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
133966-Thumbnail Image.png
Description
In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our

In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our society do not command the scientific literacy necessary to address important societal issues and concerns" (NCES 2012, p.11). Additionally, far too many people are incapable of thinking long term and understanding how their actions affect others. Because of this shortsightedness our world is facing one of its biggest ecological crises \u2014 global warming confounded by overpopulation and overconsumption. Now, more than ever, it is critical "for our young people to have a basic understanding of the relevant scientific ideas, technologies and ethical issues and powers of reasoning, to be prepared to face these issues" (Harlen et al., 2015). I believe that investigating innovative ways to teach ecology could be an important step to accomplishing this. Learning to think like a scientist forces people to rely on facts, follow similar protocols to deduce these facts, and be able to think critically about misleading events. More specifically, ecology education will allow people to develop those skills while also learning about team work, open-mindedness, and their environment. Ecology is defined as "the branch of biology that deals with the relations of organisms to one another and to their physical surroundings" (Dictionary.com, 2018). It is clear that this subcategory of science could act as a powerful introduction to the scientific world and how we relate to it. Its introduction at a young age has the potential to create a generation of conscientious and curious lifelong learners. In an attempt to support effective ways to teach ecology, I developed an educational unit and applied it in different educational contexts. My target audience was elementary aged students and I tested this unit with children in Phoenix Metropolitan Area afterschool programs. I taught core concepts of ecology \u2014 the water cycle, the sun's energy, plants and photosynthesis, and food webs \u2014in a sequence of lesson plans that build upon each other. Finally, I determined the appropriate age group and setting for these lesson plans through research and in-class observations. In this document, I explain the process I went through in developing my lesson plans, why I felt compelled to make them, and my experiences in implementing them.
ContributorsVotaw, Alexandra Lindsay (Author) / Larson, Kelli (Thesis director) / Herrmann, Lisa (Committee member) / York, Abigail (Committee member) / School of Art (Contributor) / The Design School (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05