Matching Items (3)
Filtering by

Clear all filters

152917-Thumbnail Image.png
Description
When discussing human factors and performance, researchers recognize stress as a factor, but overlook mood as contributing factor. To explore the relationship between mood, stress and cognitive performance, a field study was conducted involving fire fighters engaged in a fire response simulation. Firefighter participants completed a stress questionnaire, an emotional

When discussing human factors and performance, researchers recognize stress as a factor, but overlook mood as contributing factor. To explore the relationship between mood, stress and cognitive performance, a field study was conducted involving fire fighters engaged in a fire response simulation. Firefighter participants completed a stress questionnaire, an emotional state questionnaire, and a cognitive task. Stress and cognitive task performance scores were examined before and after the firefighting simulation for individual cognitive performance depreciation caused by stress or mood. They study revealed that existing stress was a reliable predictor of the pre-simulation cognitive task score, that, as mood becomes more positive, perceived stress scores decrease, and that negative mood and pre-simulation stress are also positively and significantly correlated.
ContributorsGomez-Herbert, Maria Elena (Author) / Cooke, Nancy J. (Thesis advisor) / Becker, Vaughn (Committee member) / Branaghan, Russell (Committee member) / Hyunjin, Song (Committee member) / Arizona State University (Publisher)
Created2014
157284-Thumbnail Image.png
Description
Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research

Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research it was defined as off task thoughts that occur due to the task not requiring full cognitive capacity. Drivers were asked to operate a driving simulator and follow audio turn by turn directions while experiencing each of three cell phone notification levels: Control (no texts), Airplane (texts with no notifications), and Ringer (audio notifications). Measures of Brake Reaction Time, Headway Variability, and Average Speed were used to operationalize driver distraction. Drivers experienced higher Brake Reaction Time and Headway Variability with a lower Average Speed in both experimental conditions when compared to the Control Condition. This is consistent with previous research in the field of implying a distracted state. Oculomotor movement was measured as the percent time the participant was looking at the road. There was no significant difference between the conditions in this measure. The results of this research indicate that not, while not interacting with a cell phone, no audio notification is required to induce a state of distraction. This phenomenon was unable to be linked to mind-wandering.
ContributorsRadina, Earl (Author) / Gray, Robert (Thesis advisor) / Chiou, Erin (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019
155290-Thumbnail Image.png
Description
In sports, athletes reach new levels every day and are truly masters of their own bodies. Yet, when placed under pressure, the pin-point accuracy and elite level of performance can begin to wane.  Despite plentiful literature investigating the effects of pressure on performance, the underlying mechanisms behind decreased performance in

In sports, athletes reach new levels every day and are truly masters of their own bodies. Yet, when placed under pressure, the pin-point accuracy and elite level of performance can begin to wane.  Despite plentiful literature investigating the effects of pressure on performance, the underlying mechanisms behind decreased performance in sport are not yet clear.  The current research discusses possible theories for “choking under pressure”, the specific mechanisms through which pressure has its effects, and methods to prevent “choking.”  Fourteen current and former basketball players shot free throws with two primary predictor variables: the presence/absence of performance pressure and the restriction
on-restriction of movement during the pre-shot routine. Results were analyzed using 2x2 Within-Subjects Analysis of Variance. For shooting performance, there was an interaction (approaching significance) such that participants were more affected by pressure when allowed to execute their pre-shot routine. For kinematic variables, significant interactions between pressure and movement restriction were found for elbow-knee cross correlations and there were significant main effects of variability of the acceleration of both the elbow and knee angles. In all kinematic measures, participants exhibited more “novice-like” patterns of movement under pressure when movement was not restricted during the pre-shot routine. Primary results indicate promising evidence that motor control may be a mediating variable between pressure and performance and bring into question the value of a pre-shot routine in basketball.
ContributorsOrn, Anders (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russell (Thesis advisor) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2017