Matching Items (4)
Filtering by

Clear all filters

156575-Thumbnail Image.png
Description
Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading

Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading cause of death. Diagnosis of AD cannot be confidently confirmed until after death. This has prompted the importance of early diagnosis of AD, based upon symptoms of cognitive decline. A symptom of early cognitive decline and indicator of AD is Mild Cognitive Impairment (MCI). In addition to this qualitative test, Biomarker tests have been proposed in the medical field including p-Tau, FDG-PET, and hippocampal. These tests can be administered to patients as early detectors of AD thus improving patients’ life quality and potentially reducing the costs of the health structure. Preliminary work has been conducted in the development of a Sequential Tree Based Classifier (STC), which helps medical providers predict if a patient will contract AD or not, by sequentially testing these biomarker tests. The STC model, however, has its limitations and the need for a more complex, robust model is needed. In fact, STC assumes a general linear model as the status of the patient based upon the tests results. We take a simulation perspective and try to define a more complex model that represents the patient evolution in time.

Specifically, this thesis focuses on the formulation of a Markov Chain model that is complex and robust. This Markov Chain model emulates the evolution of MCI patients based upon doctor visits and the sequential administration of biomarker tests. Data provided to create this Markov Chain model were collected by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The data lacked detailed information of the sequential administration of the biomarker tests and therefore, different analytical approaches were tried and conducted in order to calibrate the model. The resulting Markov Chain model provided the capability to conduct experiments regarding different parameters of the Markov Chain and yielded different results of patients that contracted AD and those that did not, leading to important insights into effect of thresholds and sequence on patient prediction capability as well as health costs reduction.



The data in this thesis was provided from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI investigators did not contribute to any analysis or writing of this thesis. A list of the ADNI investigators can be found at: http://adni.loni.usc.edu/about/governance/principal-investigators/ .
ContributorsCamarena, Raquel (Author) / Pedrielli, Giulia (Thesis advisor) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2018
149478-Thumbnail Image.png
Description
Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model

Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model is used to evaluate how scheduling heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared to current practice. Next, a bi-criteria Genetic Algorithm is used to determine if better solutions can be obtained for this single day scheduling problem. The efficacy of the bi-criteria Genetic Algorithm, when surgeries are allowed to be moved to other days, is investigated. Numerical experiments based on real data from a large health care provider are presented. The analysis provides insight into the best scheduling heuristics, and the tradeoff between patient and health care provider based criteria. Second, a multi-stage stochastic mixed integer programming formulation for the allocation of surgeries to ORs over a finite planning horizon is studied. The demand for surgery and surgical duration are random variables. The objective is to minimize two competing criteria: expected surgery cancellations and OR overtime. A decomposition method, Progressive Hedging, is implemented to find near optimal surgery plans. Finally, properties of the model are discussed and methods are proposed to improve the performance of the algorithm based on the special structure of the model. It is found simple rules can improve schedules used in practice. Sequencing surgeries from the longest to shortest mean duration causes high expected overtime, and should be avoided, while sequencing from the shortest to longest mean duration performed quite well in our experiments. Expending greater computational effort with more sophisticated optimization methods does not lead to substantial improvements. However, controlling daily procedure mix may achieve substantial improvements in performance. A novel stochastic programming model for a dynamic surgery planning problem is proposed in the dissertation. The efficacy of the progressive hedging algorithm is investigated. It is found there is a significant correlation between the performance of the algorithm and type and number of scenario bundles in a problem instance. The computational time spent to solve scenario subproblems is among the most significant factors that impact the performance of the algorithm. The quality of the solutions can be improved by detecting and preventing cyclical behaviors.
ContributorsGul, Serhat (Author) / Fowler, John W. (Thesis advisor) / Denton, Brian T. (Thesis advisor) / Wu, Teresa (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2010
149481-Thumbnail Image.png
Description
Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task

Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task due to the conflicting objectives and the uncertain nature of surgeries. In this dissertation, three different methodologies are developed to address OR planning and scheduling problem. First, a simulation-based framework is constructed to analyze the factors that affect the utilization of a catheterization lab and provide decision support for improving the efficiency of operations in a hospital with different priorities of patients. Both operational costs and patient satisfaction metrics are considered. Detailed parametric analysis is performed to provide generic recommendations. Overall it is found the 75th percentile of process duration is always on the efficient frontier and is a good compromise of both objectives. Next, the general OR planning and scheduling problem is formulated with a mixed integer program. The objectives include reducing staff overtime, OR idle time and patient waiting time, as well as satisfying surgeon preferences and regulating patient flow from OR to the Post Anesthesia Care Unit (PACU). Exact solutions are obtained using real data. Heuristics and a random keys genetic algorithm (RKGA) are used in the scheduling phase and compared with the optimal solutions. Interacting effects between planning and scheduling are also investigated. Lastly, a multi-objective simulation optimization approach is developed, which relaxes the deterministic assumption in the second study by integrating an optimization module of a RKGA implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to search for Pareto optimal solutions, and a simulation module to evaluate the performance of a given schedule. It is experimentally shown to be an effective technique for finding Pareto optimal solutions.
ContributorsLi, Qing (Author) / Fowler, John W (Thesis advisor) / Mohan, Srimathy (Thesis advisor) / Gopalakrishnan, Mohan (Committee member) / Askin, Ronald G. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2010
148419-Thumbnail Image.png
Description

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from the driver’s point of view. Ineffective communication will lead to unnecessary discomfort among drivers caused by an underlying uncertainty about what an autonomous vehicle is or isn’t about to do. Recent studies suggest that humans tend to fixate on areas of higher uncertainty so scenarios that have a higher number of vehicle fixations can be reasoned to be more uncertain. We provide a framework for measuring human uncertainty and use the framework to measure the effect of empathetic vs non-empathetic agents. We used a simulated driving environment to create recorded scenarios and manipulate the autonomous vehicle to include either an empathetic or non-empathetic agent. The driving interaction is composed of two vehicles approaching an uncontrolled intersection. These scenarios were played to twelve participants while their gaze was recorded to track what the participants were fixating on. The overall intent was to provide an analytical framework as a tool for evaluating autonomous driving features; and in this case, we choose to evaluate how effective it was for vehicles to have empathetic behaviors included in the autonomous vehicle decision making. A t-test analysis of the gaze indicated that empathy did not in fact reduce uncertainty although additional testing of this hypothesis will be needed due to the small sample size.

ContributorsGreenhagen, Tanner Patrick (Author) / Yang, Yezhou (Thesis director) / Jammula, Varun C (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05