Matching Items (6)
Filtering by

Clear all filters

132302-Thumbnail Image.png
Description
The instruction of students in computer science concepts can be enhanced by creating programmable simulations and games. ASU VIPLE, which is a framework used to control simulations, robots, and for IoT applications, can be used as an educational tool. Further, the Unity engine allows the creation of 2D and 3D

The instruction of students in computer science concepts can be enhanced by creating programmable simulations and games. ASU VIPLE, which is a framework used to control simulations, robots, and for IoT applications, can be used as an educational tool. Further, the Unity engine allows the creation of 2D and 3D games. The development of basic minigames in Unity can provide simulations for students to program. One can run the Unity minigame and their corresponding VIPLE script to control them over a network connection as well as locally. The minigames conform to the robot output and robot input interfaces supported by VIPLE. With this goal in mind, a snake game, a space shooter game, and a runner game have been created as Unity simulations, which can be controlled by scripts made using VIPLE. These games represent simulated environments that, with movement output and sensor input, students can program simply and externally from VIPLE to help learn robotics and computer science principles.
ContributorsChristensen, Collin Riley (Author) / Chen, Yinong (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166200-Thumbnail Image.png
Description
Simulations can be used to help formulate and solve complex problems. Toward this goal, the Arizona Center for Integrative Modeling and Simulation (ACIMS) is a research laboratory at Arizona State University that creates powerful tools for simulating complex systems. Their flagship simulator, DEVS-Suite, allows users to create models that can

Simulations can be used to help formulate and solve complex problems. Toward this goal, the Arizona Center for Integrative Modeling and Simulation (ACIMS) is a research laboratory at Arizona State University that creates powerful tools for simulating complex systems. Their flagship simulator, DEVS-Suite, allows users to create models that can be simulated. The latest version of this simulator supports storing data in Postgres, a relational database that is well suited for storing millions of data points. However, though DEVS-Suite supports real-time visualizations, the simulator does not support the manipulation and visualization of the data stored in the database. As simulations become more complex, users benefit from visualizing time-based trajectories. User-defined data visualization can help gain new insight into generated simulated data.
ContributorsSchaffer, Albert (Author) / Sarjoughian, Hessam (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164914-Thumbnail Image.png
ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05
164915-Thumbnail Image.jpg
ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05
164916-Thumbnail Image.jpg
ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05