Matching Items (7)
Filtering by

Clear all filters

151720-Thumbnail Image.png
Description
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Sankin, Igor (Committee member) / Arizona State University (Publisher)
Created2013
152460-Thumbnail Image.png
Description
New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in the field. An on-going concern for engineers is the consequences of ionizing radiation exposure, specifically total dose effects. For many of the different applications, there is a likelihood of exposure to radiation, which can result in device degradation and potentially failure. While the total dose effects and the resulting degradation are a well-studied field and methodologies to help mitigate degradation have been developed, there is still a need for simulation techniques to help designers understand total dose effects within their design. To that end, the work presented here details simulation techniques to analyze as well as predict the total dose response of a circuit. In this dissertation the total dose effects are broken into two sub-categories, intra-device and inter-device effects in CMOS technology. Intra-device effects degrade the performance of both n-channel and p-channel transistors, while inter-device effects result in loss of device isolation. In this work, multiple case studies are presented for which total dose degradation is of concern. Through the simulation techniques, the individual device and circuit responses are modeled post-irradiation. The use of these simulation techniques by circuit designers allow predictive simulation of total dose effects, allowing focused design changes to be implemented to increase radiation tolerance of high reliability electronics.
ContributorsSchlenvogt, Garrett (Author) / Barnaby, Hugh (Thesis advisor) / Goodnick, Stephen (Committee member) / Vasileska, Dragica (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
154064-Thumbnail Image.png
Description
Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo

Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo (MC) solution of the phonon Boltzmann Transport Equation. The phonon MC solver was developed next as part of this thesis. Simulation results of the thermal conductivity in bulk Si show good agreement with theoretical/experimental values from literature.
ContributorsYoo, Seung Kyung (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
155942-Thumbnail Image.png
Description
In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications

In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications due to broad range of bandgaps of InxGa1-xN alloys from 0.65 eV (InN) to 3.42 eV (GaN), which covers most of the electromagnetic spectrum from ultraviolet to infrared wavelengths. InGaN’s high absorption coefficient, radiation resistance and thermal stability (operating with temperature > 450 ℃) makes it a suitable PV candidate for hybrid concentrating solar thermal systems as well as other high temperature applications. This work proposed a high efficiency InGaN-based 2J tandem cell for high temperature (450 ℃) and concentration (200 X) hybrid concentrated solar thermal (CSP) application via numerical simulation. In order to address the polarization and band-offset issues for GaN/InGaN hetero-solar cells, band-engineering techniques are adopted and a simple interlayer is proposed at the hetero-interface rather than an Indium composition grading layer which is not practical in fabrication. The base absorber thickness and doping has been optimized for 1J cell performance and current matching has been achieved for 2J tandem cell design. The simulations also suggest that the issue of crystalline quality (i.e. short SRH lifetime) of the nitride material system to date is a crucial factor limiting the performance of the designed 2J cell at high temperature. Three pathways to achieve ~25% efficiency have been proposed under 450 ℃ and 200 X. An anti-reflection coating (ARC) for the InGaN solar cell optical management has been designed. Finally, effective mobility model for quantum well solar cells has been developed for efficient quasi-bulk simulation.
ContributorsFang, Yi, Ph.D (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Ponce, Fernando (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2017
157176-Thumbnail Image.png
Description
Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for

Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency.

Though GaN CAVETs are promising new devices, they are expensive to develop due to new or exotic materials and processing steps. As a result, the accurate simulation of GaN CAVETs has become critical to the development of new devices. Using Silvaco Atlas 5.24.1.R, best practices were developed for GaN CAVET simulation by recreating the structure and results of the pGaN insulated gate CAVET presented in chapter 3 of [8].

From the results it was concluded that the best simulation setup for transfer characteristics, output characteristics, and breakdown included the following. For methods, the use of Gummel, Block, Newton, and Trap. For models, SRH, Fermi, Auger, and impact selb. For mobility, the use of GANSAT and manually specified saturation velocity and mobility (based on doping concentration). Additionally, parametric sweeps showed that, of those tested, critical CAVET parameters included channel mobility (and thus doping), channel thickness, Current Blocking Layer (CBL) doping, gate overlap, and aperture width in rectangular devices or diameter in cylindrical devices.
ContributorsWarren, Andrew (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2019
158215-Thumbnail Image.png
Description
4H-SiC has been widely used in many applications. All of these benefit from its extremely high critical electric field and good electron mobility. For example, 4H-SiC possesses a critical field ten times higher than that of Si, which allows high-voltage blocking layers composed of 4H-SiC to be approximately a tenth

4H-SiC has been widely used in many applications. All of these benefit from its extremely high critical electric field and good electron mobility. For example, 4H-SiC possesses a critical field ten times higher than that of Si, which allows high-voltage blocking layers composed of 4H-SiC to be approximately a tenth the thickness of a comparable Si device. This, in turn, reduces the device on-resistance and power losses while maintaining the same high blocking capability.

Unfortunately, commercial TCAD tools like Sentaurus and Silvaco Atlas are based on the effective mass approximation, while most 4H-SiC devices are not operated under low electric field, so the parabolic-like band approximation does not hold anymore. Hence, to get more accurate and reliable simulation results, full-band analysis is needed. The first step in the development of a full-band device simulator is the calculation of the band structure. In this work, the empirical pseudopotential method (EPM) is adopted. The next task in the sequence is the calculation of the scattering rates. Acoustic, non-polar optical phonon, polar optical phonon and Coulomb scattering are considered. Coulomb scattering is treated in real space using the particle-particle-particle-mesh (P3M) approach. The third task is coupling the bulk full-band solver with a 3D Poisson equation solver to generate a full-band device simulator.

For proof-of-concept of the methodology adopted here, a 3D resistor is simulated first. From the resistor simulations, the low-field electron mobility dependence upon Coulomb scattering in 4H-SiC devices is extracted. The simulated mobility results agree very well with available experimental data. Next, a 3D VDMOS is simulated. The nature of the physical processes occurring in both steady-state and transient conditions are revealed for the two generations of 3D VDMOS devices being considered in the study.

Due to its comprehensive nature, the developed tool serves as a basis for future investigation of 4H-SiC power devices.
ContributorsCheng, Chi-Yin (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Thesis advisor) / Ponce, Fernando (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2020