Matching Items (4)
Filtering by

Clear all filters

152866-Thumbnail Image.png
Description
The measurement of competency in nursing is critical to ensure safe and effective care of patients. This study had two purposes. First, the psychometric characteristics of the Nursing Performance Profile (NPP), an instrument used to measure nursing competency, were evaluated using generalizability theory and a sample of 18 nurses in

The measurement of competency in nursing is critical to ensure safe and effective care of patients. This study had two purposes. First, the psychometric characteristics of the Nursing Performance Profile (NPP), an instrument used to measure nursing competency, were evaluated using generalizability theory and a sample of 18 nurses in the Measuring Competency with Simulation (MCWS) Phase I dataset. The relative magnitudes of various error sources and their interactions were estimated in a generalizability study involving a fully crossed, three-facet random design with nurse participants as the object of measurement and scenarios, raters, and items as the three facets. A design corresponding to that of the MCWS Phase I data--involving three scenarios, three raters, and 41 items--showed nurse participants contributed the greatest proportion to total variance (50.00%), followed, in decreasing magnitude, by: rater (19.40%), the two-way participant x scenario interaction (12.93%), and the two-way participant x rater interaction (8.62%). The generalizability (G) coefficient was .65 and the dependability coefficient was .50. In decision study designs minimizing number of scenarios, the desired generalizability coefficients of .70 and .80 were reached at three scenarios with five raters, and five scenarios with nine raters, respectively. In designs minimizing number of raters, G coefficients of .72 and .80 were reached at three raters and five scenarios and four raters and nine scenarios, respectively. A dependability coefficient of .71 was attained with six scenarios and nine raters or seven raters and nine scenarios. Achieving high reliability with designs involving fewer raters may be possible with enhanced rater training to decrease variance components for rater main and interaction effects. The second part of this study involved the design and implementation of a validation process for evidence-based human patient simulation scenarios in assessment of nursing competency. A team of experts validated the new scenario using a modified Delphi technique, involving three rounds of iterative feedback and revisions. In tandem, the psychometric study of the NPP and the development of a validation process for human patient simulation scenarios both advance and encourage best practices for studying the validity of simulation-based assessments.
ContributorsO'Brien, Janet Elaine (Author) / Thompson, Marilyn (Thesis advisor) / Hagler, Debra (Thesis advisor) / Green, Samuel (Committee member) / Arizona State University (Publisher)
Created2014
156621-Thumbnail Image.png
Description
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline models, the bifactor models fit data well and had minimal bias in latent mean estimation. However, the low convergence rates of fitting bifactor models to data with complex structures and small sample sizes caused concern. On the other hand, effects of fitting the misspecified single-factor models on the assessments of MI and latent means differed by the bifactor structures underlying data. For data following one general factor and one group factor affecting a small set of indicators, the effects of ignoring the group factor in analysis models on the tests of MI and latent mean differences were mild. In contrast, for data following one general factor and several group factors, oversimplifications of analysis models can lead to inaccurate conclusions regarding MI assessment and latent mean estimation.
ContributorsXu, Yuning (Author) / Green, Samuel (Thesis advisor) / Levy, Roy (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2018
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020
158648-Thumbnail Image.png
Description
The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create a simulation of an autonomous underwater vehicle (AUV) closely following a moving autonomous surface vehicle (ASV) in an underwater coral reef environment. It incorporates the Unity3D game engine and the robotics software Gazebo to take advantage of Unity3D's perception and Gazebo's physics simulation. The software is developed as a containerized solution that is deployable on cloud and on-premise systems.

This method of utilizing Gazebo's physics and Unity3D perception is evaluated for a team of marine vehicles (an AUV and an ASV) in a coral reef environment. A coordinated navigation and localization module is presented that allows the AUV to follow the path of the ASV. A fiducial marker underneath the ASV facilitates pose estimation of the AUV, and the pose estimates are filtered using the known dynamical system model of both vehicles for better localization. This thesis also investigates different fiducial markers and their detection rates in this Unity3D underwater environment. The limitations and capabilities of this Unity3D perception and Gazebo physics approach are examined.
ContributorsAnand, Harish (Author) / Das, Jnaneshwar (Thesis advisor) / Yang, Yezhou (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2020