Matching Items (8)

Filtering by

Clear all filters

152337-Thumbnail Image.png

Study of an epidemic multiple behavior diffusion model in a resource constrained social network

Description

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.

Contributors

Agent

Created

Date Created
2013

152541-Thumbnail Image.png

IISS a framework to influence individuals through social signals on a social network

Description

Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with

Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a subset of items presented to her. The network operator again, shows that activity to a selection of peers, and thus creating a behavioral loop. That mechanism of interaction and information flow raises some very interesting questions such as: can network operator design social signals to promote a particular activity like sustainability, public health care awareness, or to promote a specific product? The focus of my thesis is to answer that question. In this thesis, I develop a framework to personalize social signals for users to guide their activities on an online platform. As the result, we gradually nudge the activity distribution on the platform from the initial distribution p to the target distribution q. My work is particularly applicable to guiding collaborations, guiding collective actions, and online advertising. In particular, I first propose a probabilistic model on how users behave and how information flows on the platform. The main part of this thesis after that discusses the Influence Individuals through Social Signals (IISS) framework. IISS consists of four main components: (1) Learner: it learns users' interests and characteristics from their historical activities using Bayesian model, (2) Calculator: it uses gradient descent method to compute the intermediate activity distributions, (3) Selector: it selects users who can be influenced to adopt or drop specific activities, (4) Designer: it personalizes social signals for each user. I evaluate the performance of IISS framework by simulation on several network topologies such as preferential attachment, small world, and random. I show that the framework gradually nudges users' activities to approach the target distribution. I use both simulation and mathematical method to analyse convergence properties such as how fast and how close we can approach the target distribution. When the number of activities is 3, I show that for about 45% of target distributions, we can achieve KL-divergence as low as 0.05. But for some other distributions KL-divergence can be as large as 0.5.

Contributors

Agent

Created

Date Created
2014

153259-Thumbnail Image.png

Understanding social media users via attributes and links

Description

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.

Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.

Contributors

Agent

Created

Date Created
2014

151323-Thumbnail Image.png

The interpersonal determinants of green purchasing: an assessment of the empirical record

Description

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.

Contributors

Agent

Created

Date Created
2012

156297-Thumbnail Image.png

Detecting Political Framing Shifts and the Adversarial Phrases within\\ Rival Factions and Ranking Temporal Snapshot Contents in Social Media

Description

Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements

Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).

Contributors

Agent

Created

Date Created
2018

157052-Thumbnail Image.png

Data Driven Inference in Populations of Agents

Description

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand the different types of reasonings which can lead to better data-driven inference.  

This dissertation has laid the groundwork for studying these relationships and applying them to three real-world problems. In criminal modeling, inductive and deductive reasonings are applied to early prediction of violent criminal gang members. To address this problem the features derived from the co-arrestee social network as well as geographical and temporal features are leveraged. Then, a data-driven variant of geospatial abductive inference is studied in missing person problem to locate the missing person. Finally, induction and abduction reasonings are studied for identifying pathogenic accounts of a cascade in social networks.

Contributors

Agent

Created

Date Created
2019

155764-Thumbnail Image.png

Detecting Organizational Accounts from Twitter Based on Network and Behavioral Factors

Description

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, groups and organization leaders. Finally, the experimental results are presented and a subset of relevant features is identified that lead to a generalizable model. Detection of tiny number of groups from large network is achieved with 0.8 precision, 0.75 recall and 0.77 F1 score. The domain independent network and behavioral features and models developed here are suitable for solving twitter account classification problem in any context.

Contributors

Agent

Created

Date Created
2017

157810-Thumbnail Image.png

Three Facets of Online Political Networks: Communities, Antagonisms, and Polarization

Description

Millions of users leave digital traces of their political engagements on social media platforms every day. Users form networks of interactions, produce textual content, like and share each others' content. This creates an invaluable opportunity to better understand the political

Millions of users leave digital traces of their political engagements on social media platforms every day. Users form networks of interactions, produce textual content, like and share each others' content. This creates an invaluable opportunity to better understand the political engagements of internet users. In this proposal, I present three algorithmic solutions to three facets of online political networks; namely, detection of communities, antagonisms and the impact of certain types of accounts on political polarization. First, I develop a multi-view community detection algorithm to find politically pure communities. I find that word usage among other content types (i.e. hashtags, URLs) complement user interactions the best in accurately detecting communities.

Second, I focus on detecting negative linkages between politically motivated social media users. Major social media platforms do not facilitate their users with built-in negative interaction options. However, many political network analysis tasks rely on not only positive but also negative linkages. Here, I present the SocLSFact framework to detect negative linkages among social media users. It utilizes three pieces of information; sentiment cues of textual interactions, positive interactions, and socially balanced triads. I evaluate the contribution of each three aspects in negative link detection performance on multiple tasks.

Third, I propose an experimental setup that quantifies the polarization impact of automated accounts on Twitter retweet networks. I focus on a dataset of tragic Parkland shooting event and its aftermath. I show that when automated accounts are removed from the retweet network the network polarization decrease significantly, while a same number of accounts to the automated accounts are removed randomly the difference is not significant. I also find that prominent predictors of engagement of automatically generated content is not very different than what previous studies point out in general engaging content on social media. Last but not least, I identify accounts which self-disclose their automated nature in their profile by using expressions such as bot, chat-bot, or robot. I find that human engagement to self-disclosing accounts compared to non-disclosing automated accounts is much smaller. This observational finding can motivate further efforts into automated account detection research to prevent their unintended impact.

Contributors

Agent

Created

Date Created
2019