Matching Items (137)
Filtering by

Clear all filters

158074-Thumbnail Image.png
Description
In the last decade, the immense growth of computational power, enhanced data storage capabilities, and the increasing popularity of online learning systems has led to adaptive learning systems becoming more widely available. Parallel to infrastructure enhancements, more researchers have started to study the adaptive task selection systems, concluding that suggesting

In the last decade, the immense growth of computational power, enhanced data storage capabilities, and the increasing popularity of online learning systems has led to adaptive learning systems becoming more widely available. Parallel to infrastructure enhancements, more researchers have started to study the adaptive task selection systems, concluding that suggesting tasks appropriate to students' needs may increase students' learning gains.

This work built an adaptive task selection system for undergraduate organic chemistry students using a deep learning algorithm. The proposed model is based on a recursive neural network (RNN) architecture built with Long-Short Term Memory (LSTM) cells that recommends organic chemistry practice questions to students depending on their previous question selections.

For this study, educational data were collected from the Organic Chemistry Practice Environment (OPE) that is used in the Organic Chemistry course at Arizona State University. The OPE has more than three thousand questions. Each question is linked to one or more knowledge components (KCs) to enable recommendations that precisely address the knowledge that students need. Subject matter experts made the connection between questions and related KCs.

A linear model derived from students' exam results was used to identify skilled students. The neural network based recommendation system was trained using those skilled students' problem solving attempt sequences so that the trained system recommends questions that will likely improve learning gains the most. The model was evaluated by measuring the predicted questions' accuracy against learners' actual task selections. The proposed model not only accurately predicted the learners' actual task selection but also the correctness of their answers.
ContributorsKOSELER EMRE, Refika (Author) / VanLehn, Kurt A (Thesis advisor) / Davulcu, Hasan (Committee member) / Hsiao, Sharon (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2020
158792-Thumbnail Image.png
Description
Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the reach of the preferred mobility device or outside the path of travel. Although, the area of assistive technology in terms of electronic travel aids (ETA’s) has received considerable attention over the last two decades; surprisingly, the field has seen little work in the area focused on augmenting rather than replacing current non-visual travel techniques, methods, and tools. Consequently, this work describes the design of an intuitive tactile language and series of wearable tactile interfaces (the Haptic Chair, HaptWrap, and HapBack) to deliver real-time spatiotemporal data. The overall intuitiveness of the haptic mappings conveyed through the tactile interfaces are evaluated using a combination of absolute identification accuracy of a series of patterns and subjective feedback through post-experiment surveys. Two types of spatiotemporal representations are considered: static patterns representing object location at a single time instance, and dynamic patterns, added in the HaptWrap, which represent object movement over a time interval. Results support the viability of multi-dimensional haptics applied to the body to yield an intuitive understanding of dynamic interactions occurring around the navigator during travel. Lastly, it is important to point out that the guiding principle of this work centered on providing the navigator with spatial knowledge otherwise unattainable through current mobility techniques, methods, and tools, thus, providing the \emph{navigator} with the information necessary to make informed navigation decisions independently, at a distance.
ContributorsDuarte, Bryan Joiner (Author) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020
158774-Thumbnail Image.png
Description
Technological advances have allowed for the assimilation of a variety of data, driving a shift away from the use of simpler and constrained patterns to more complex and diverse patterns in retrieval and analysis of such data. This shift has inundated the conventional techniques and has stressed the need for

Technological advances have allowed for the assimilation of a variety of data, driving a shift away from the use of simpler and constrained patterns to more complex and diverse patterns in retrieval and analysis of such data. This shift has inundated the conventional techniques and has stressed the need for intelligent mechanisms that can model the complex patterns in the data. Deep neural networks have shown some success at capturing complex patterns, including the so-called attentioned networks, have significant shortcomings in distinguishing what is important in data from what is noise. This dissertation observes that the traditional neural networks primarily rely solely on gradient-based learning to model deep features maps while ignoring the key insight in the data that can be leveraged as complementary information to help learn an accurate model. In particular, this dissertation shows that the localized multi-scale features (captured implicitly or explicitly) can be leveraged to help improve model performance as these features capture salient informative points in the data.

This dissertation focuses on “working with the data, not just on data”, i.e. leveraging feature saliency through pre-training, in-training, and post-training analysis of the data. In particular, non-neural localized multi-scale feature extraction, in images and time series, are relatively cheap to obtain and can provide a rough overview of the patterns in the data. Furthermore, localized features coupled with deep features can help learn a high performing network. A pre-training analysis of sizes, complexities, and distribution of these localized features can help intelligently allocate a user-provided kernel budget in the network as a single-shot hyper-parameter search. Additionally, these localized features can be used as a secondary input modality to the network for cross-attention. Retraining pre-trained networks can be a costly process, yet, a post-training analysis of model inferences can allow for learning the importance of individual network parameters to the model inferences thus facilitating a retraining-free network sparsification with minimal impact on the model performance. Furthermore, effective in-training analysis of the intermediate features in the network help learn the importance of individual intermediate features (neural attention) and this analysis can be achieved through simulating local-extrema detection or learning features simultaneously and understanding their co-occurrences. In summary, this dissertation argues and establishes that, if appropriately leveraged, localized features and their feature saliency can help learn high-accurate, yet cheaper networks.
ContributorsGarg, Yash (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Sapino, Maria Luisa (Committee member) / Arizona State University (Publisher)
Created2020
158436-Thumbnail Image.png
Description
The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has

The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII)

In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:

• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?

• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?

• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?

The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
ContributorsTadayon, Arash (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Krishnamurthi, Narayanan (Committee member) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
158392-Thumbnail Image.png
Description
The development of the internet provided new means for people to communicate effectively and share their ideas. There has been a decline in the consumption of newspapers and traditional broadcasting media toward online social mediums in recent years. Social media has been introduced as a new way of increasing democratic

The development of the internet provided new means for people to communicate effectively and share their ideas. There has been a decline in the consumption of newspapers and traditional broadcasting media toward online social mediums in recent years. Social media has been introduced as a new way of increasing democratic discussions on political and social matters. Among social media, Twitter is widely used by politicians, government officials, communities, and parties to make announcements and reach their voice to their followers. This greatly increases the acceptance domain of the medium.

The usage of social media during social and political campaigns has been the subject of a lot of social science studies including the Occupy Wall Street movement, The Arab Spring, the United States (US) election, more recently The Brexit campaign. The wide

spread usage of social media in this space and the active participation of people in the discussions on social media made this communication channel a suitable place for spreading propaganda to alter public opinion.

An interesting feature of twitter is the feasibility of which bots can be programmed to operate on this platform. Social media bots are automated agents engineered to emulate the activity of a human being by tweeting some specific content, replying to users, magnifying certain topics by retweeting them. Network on these bots is called botnets and describing the collaboration of connected computers with programs that communicates across multiple devices to perform some task.

In this thesis, I will study how bots can influence the opinion, finding which parameters are playing a role in shrinking or coalescing the communities, and finally logically proving the effectiveness of each of the hypotheses.
ContributorsAhmadi, Mohsen (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
158298-Thumbnail Image.png
Description
In the presence of big data analysis, large volume of data needs to be systematically indexed to support analytical tasks, such as feature engineering, pattern recognition, data mining, and query processing. The volume, variety, and velocity of these data necessitate sophisticated systems to help researchers understand, analyze, and dis- cover

In the presence of big data analysis, large volume of data needs to be systematically indexed to support analytical tasks, such as feature engineering, pattern recognition, data mining, and query processing. The volume, variety, and velocity of these data necessitate sophisticated systems to help researchers understand, analyze, and dis- cover insights from heterogeneous, multidimensional data sources. Many analytical frameworks have been proposed in the literature in recent years, but challenges to accuracy, speed, and effectiveness remain hence a systematic approach to perform data signature computation and query processing in multi-dimensional space is in people’s interest. In particular, real-time and near real-time queries pose significant challenges when working with large data sets.

To address these challenges, I develop an innovative robust multi-variate fea- ture extraction algorithm over multi-dimensional temporal datasets, which is able to help understand and analyze various real-world applications. Furthermore, to an- swer queries over these features, I develop a novel resource-aware indexing framework to approximately solve top-k queries by leveraging onion-layer indexing in conjunc- tion with locality sensitive hashing. The proposed indexing scheme allows people to answer top-k queries by only accessing a bounded amount of data, which optimizes big data small for queries.
ContributorsLiu, Sicong (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020
158353-Thumbnail Image.png
Description
Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image

Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image memes are used in viral marketing and mass advertising to propagate any ideas ranging from simple commercials to those that can cause changes and development in the social structures like countering hate speech.

This work proposes to treat automatic image meme generation as a translation process, and further present an end to end neural and probabilistic approach to generate an image-based meme for any given sentence using an encoder-decoder architecture. For a given input sentence, a meme is generated by combining a meme template image and a text caption where the meme template image is selected from a set of popular candidates using a selection module and the meme caption is generated by an encoder-decoder model. An encoder is used to map the selected meme template and the input sentence into a meme embedding space and then a decoder is used to decode the meme caption from the meme embedding space. The generated natural language caption is conditioned on the input sentence and the selected meme template.

The model learns the dependencies between the meme captions and the meme template images and generates new memes using the learned dependencies. The quality of the generated captions and the generated memes is evaluated through both automated metrics and human evaluation. An experiment is designed to score how well the generated memes can represent popular tweets from Twitter conversations. Experiments on Twitter data show the efficacy of the model in generating memes capable of representing a sentence in online social interaction.
ContributorsSadasivam, Aadhavan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2020
158024-Thumbnail Image.png
Description
The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to

The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to the public. To better understand the behavior and impact of the malicious actors and counter their activity, social media authorities need to deploy certain capabilities to reduce their threats. Due to the large volume of this data and limited manpower, the burden usually falls to automatic approaches to identify these malicious activities. However, this is a subtle task facing online platforms due to several challenges: (1) malicious users have strong incentives to disguise themselves as normal users (e.g., intentional misspellings, camouflaging, etc.), (2) malicious users are high likely to be key users in making harmful messages go viral and thus need to be detected at their early life span to stop their threats from reaching a vast audience, and (3) available data for training automatic approaches for detecting malicious users, are usually either highly imbalanced (i.e., higher number of normal users than malicious users) or comprise insufficient labeled data.

To address the above mentioned challenges, in this dissertation I investigate the propagation of online malicious information from two broad perspectives: (1) content posted by users and (2) information cascades formed by resharing mechanisms in social media. More specifically, first, non-parametric and semi-supervised learning algorithms are introduced to discern potential patterns of human trafficking activities that are of high interest to law enforcement. Second, a time-decay causality-based framework is introduced for early detection of “Pathogenic Social Media (PSM)” accounts (e.g., terrorist supporters). Third, due to the lack of sufficient annotated data for training PSM detection approaches, a semi-supervised causal framework is proposed that utilizes causal-related attributes from unlabeled instances to compensate for the lack of enough labeled data. Fourth, a feature-driven approach for PSM detection is introduced that leverages different sets of attributes from users’ causal activities, account-level and content-related information as well as those from URLs shared by users.
ContributorsAlvari, Hamidreza (Author) / Shakarian, Paulo (Thesis advisor) / Davulcu, Hasan (Committee member) / Tong, Hanghang (Committee member) / Ruston, Scott (Committee member) / Arizona State University (Publisher)
Created2020
161431-Thumbnail Image.png
Description
In videos that contain actions performed unintentionally, agents do not achieve their desired goals. In such videos, it is challenging for computer vision systems to understand high-level concepts such as goal-directed behavior. On the other hand, from a very early age, humans are able to understand the relation between an

In videos that contain actions performed unintentionally, agents do not achieve their desired goals. In such videos, it is challenging for computer vision systems to understand high-level concepts such as goal-directed behavior. On the other hand, from a very early age, humans are able to understand the relation between an agent and their ultimate goal even if the action gets disrupted or unintentional effects occur. Inculcating this ability in artificially intelligent agents would make them better social learners by not just learning from their own mistakes, i.e, reinforcement learning, but also learning from other's mistakes. For example, this could greatly reduce the search space for artificially intelligent agents for finding the correct action sequence when trying to achieve a new goal, since they would be able to learn from others what not to do as well as how/when actions result in undesired outcomes.To validate this ability of deep learning models to perform this task, the Weakly Augmented Oops (W-Oops) dataset is proposed, built upon the Oops dataset. W-Oops consists of 2,100 unintentional human action videos, with 44 goal-directed and 33 unintentional video-level activity labels collected through human annotations. Inspired by previous methods on tasks such as weakly supervised action localization which show promise for achieving good localization results without ground truth segment annotations, this paper proposes a weakly supervised algorithm for localizing the goal-directed as well as the unintentional temporal region of a video using only video-level labels. In particular, an attention mechanism based strategy is employed that predicts the temporal regions which contributes the most to a classification task, leveraging solely video-level labels. Meanwhile, our designed overlap regularization allows the model to focus on distinct portions of the video for inferring the goal-directed and unintentional activity, while guaranteeing their temporal ordering. Extensive quantitative experiments verify the validity of our localization method.
ContributorsChakravarthy, Arnav (Author) / Yang, Yezhou (Thesis advisor) / Davulcu, Hasan (Committee member) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2021
161479-Thumbnail Image.png
Description
Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection

Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection to correlationanalysis [31, 38]. It is well known that Singular Value matrix Decomposition (SVD) [9] is used to extract latent semantics for matrix data. When apply SVD to tensors, which have more than two modes, it is tensor decomposition. The two most popular tensor decomposition algorithms are the Tucker [54] and the CP [19] decompositions. Intuitively, they both generalize SVD to tensors. However, one key problem with tensor decomposition is its computational complexity which may cause system bottleneck. Therefore, two phase block-centric CP tensor decomposition (2PCP) was proposed to partition the tensor into small sub-tensors, execute sub-tensor decomposition in parallel and combine the factors from each sub-tensor into final decomposition factors through iterative rerefinement process. Consequently, I proposed Sub-tensor Impact Graph (SIG) to account for inaccuracy propagation among sub-tensors and measure the impact of decomposition of sub-tensors on the other's decomposition, Based on SIG, I proposed several optimization strategies to optimize 2PCP's phase-2 refinement process. Furthermore, I applied SIG and optimization strategies for data focus, data evolution, and focus shifting in tensor analysis. Personalized Tensor Decomposition (PTD) is proposed to account for the users focus given the observations that in many applications, the user may have a focus of interest i.e., part of the data for which the user needs high accuracy and beyond this area focus, accuracy may not be as critical. PTD takes as input one or more areas of focus and performs the decomposition in such a way that, when reconstructed, the accuracy of the tensor is boosted for these areas of focus. A related challenge of data evolution in tensor analytics is incremental tensor decomposition since re-computation of the whole tensor decomposition with each update will cause high computational costs and incur large memory overheads. Especially for applications where data evolves over time and the tensor-based analysis results need to be continuouslymaintained. To avoid re-decomposition, I propose a two-phase block-incremental CP-based tensor decomposition technique, BICP, that efficiently and effectively maintains tensor decomposition results in the presence of dynamically evolving tensor data. I further extend the research focus on user focus shift. User focus may change over time as data is evolving along the time. Although PTD is efficient, re-computation for each user preference update can be the bottleneck for the system. Therefore I propose dynamic evolving user focus tensor decomposition which can smartly reuse the existing decomposition result to improve the efficiency of evolving user focus block decomposition.
ContributorsHuang, shengyu (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Tong, Hanghang (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2021