Matching Items (8)

Filtering by

Clear all filters

152337-Thumbnail Image.png

Study of an epidemic multiple behavior diffusion model in a resource constrained social network

Description

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.

Contributors

Agent

Created

Date Created
2013

151323-Thumbnail Image.png

The interpersonal determinants of green purchasing: an assessment of the empirical record

Description

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.

Contributors

Agent

Created

Date Created
2012

155963-Thumbnail Image.png

Novel Image Representations and Learning Tasks

Description

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.

Contributors

Agent

Created

Date Created
2017

154885-Thumbnail Image.png

A computational approach to relative image aesthetics

Description

Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement,

Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their aesthetic quality instead of binary-categorizing them. Furthermore, in such applications, it may be possible that all images belong to the same category. Hence determining the aesthetic ranking of the images is more appropriate. To this end, a novel problem of ranking images with respect to their aesthetic quality is formulated in this work. A new data-set of image pairs with relative labels is constructed by carefully selecting images from the popular AVA data-set. Unlike in aesthetics classification, there is no single threshold which would determine the ranking order of the images across the entire data-set.

This problem is attempted using a deep neural network based approach that is trained on image pairs by incorporating principles from relative learning. Results show that such relative training procedure allows the network to rank the images with a higher accuracy than a state-of-art network trained on the same set of images using binary labels. Further analyzing the results show that training a model using the image pairs learnt better aesthetic features than training on same number of individual binary labelled images.

Additionally, an attempt is made at enhancing the performance of the system by incorporating saliency related information. Given an image, humans might fixate their vision on particular parts of the image, which they might be subconsciously intrigued to. I therefore tried to utilize the saliency information both stand-alone as well as in combination with the global and local aesthetic features by performing two separate sets of experiments. In both the cases, a standard saliency model is chosen and the generated saliency maps are convoluted with the images prior to passing them to the network, thus giving higher importance to the salient regions as compared to the remaining. Thus generated saliency-images are either used independently or along with the global and the local features to train the network. Empirical results show that the saliency related aesthetic features might already be learnt by the network as a sub-set of the global features from automatic feature extraction, thus proving the redundancy of the additional saliency module.

Contributors

Agent

Created

Date Created
2016

155339-Thumbnail Image.png

Domain Adaptive Computational Models for Computer Vision

Description

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.

Contributors

Agent

Created

Date Created
2017

156430-Thumbnail Image.png

Learning Transferable Data Representations Using Deep Generative Models

Description

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks.

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the feature space to learn transferable and disentangled rep-

resentations. Transferable feature representations help in training machine learning

models that are robust across different distributions of data. For example, with the

application of transferable features in domain adaptation, models trained on a source

distribution can be applied to a data from a target distribution even though the dis-

tributions may be different. In style transfer and image-to-image translation, disen-

tangled representations allow for the separation of style and content when translating

images.

This thesis examines learning transferable data representations in novel deep gen-

erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-

ial methods and cross-domain weight sharing in a neural network to extract trans-

ferable representations. These transferable interpretations can then be decoded into

the original image or a similar image in another domain. The Explicit Disentangling

Network (EDN) utilizes generative methods to disentangle images into their core at-

tributes and then segments sets of related attributes. The EDN can separate these

attributes by controlling the ow of information using a novel combination of losses

and network architecture. This separation of attributes allows precise modi_cations

to speci_c components of the data representation, boosting the performance of ma-

chine learning tasks. The effectiveness of these models is evaluated across domain

adaptation, style transfer, and image-to-image translation tasks.

Contributors

Agent

Created

Date Created
2018

156084-Thumbnail Image.png

Towards Learning Representations in Visual Computing Tasks

Description

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.

Contributors

Agent

Created

Date Created
2017

157174-Thumbnail Image.png

Cost-Sensitive Selective Classification and its Applications to Online Fraud Management

Description

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.

Contributors

Agent

Created

Date Created
2019