Matching Items (2)
Filtering by

Clear all filters

134380-Thumbnail Image.png
Description
The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG

The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG cells and TEG setups were tested and analyzed, proof-of-concepts and prototypes were built. and the performance of the proof-of-concepts and prototypes were tested and analyzed as well. In order to test different TEG cells and TEG setups, a TEG testing apparatus was designed and fabricated. The apparatus is capable of comparing the performance of TEGs with temperature differentials up to 200 degrees C. Along with a TEG testing apparatus, several proof-of-concepts and prototypes were completed. All of these were tested in order to determine the feasibility of the design. All three proof-of-concepts were only capable of producing a voltage output less than 300mV. The prototype, however, was capable of producing a max output voltage of 17 volts. Although the prototype outperformed all of the proof-of-concepts, optimizations to the design can continue to improve the output voltage. In order to do so, stacked TEG tests were performed. After performing the stacked TEG tests, it was determined that the use of stacked TEGs depended on the Fresnel lens chosen. If BISTEG were to use a point focused Fresnel lens, using a stack of TEGs could increase the power density. If BISTEG were to utilize a linear focused Fresnel lens, however, the TEGs should not be stacked. It would be more efficient to lay them out side by side. They can be stacked, however, if the energy density needs to be increased and the costs of the additional TEGs are not an issue.
ContributorsPark, Andrew (Author) / Seager, Thomas (Thesis director) / Margaret, Hinrichs (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154638-Thumbnail Image.png
Description
Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in the National Society of Professional Engineers code of ethics states

Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in the National Society of Professional Engineers code of ethics states that engineers should hold paramount the health, safety and welfare of the public. As a result, engineering designs meet basic human needs such as food, water and shelter -- at risks that are generally considered acceptable. However, even safe designs fail to meet our needs ranked higher in Maslow's hierarchy -- such as belonging, esteem and self-actualization. While these have historically not been ethical priorities, increasing expectations in developed countries now include more complex ethical concepts such as sustainability and social justice. We can expect these trends toward higher and more complex human needs to continue -- although the profession seems ill-prepared. We argue that an empathic approach to engineering design is necessary to meet these higher needs of developed and developing societies. To guide engineers towards this approach, we propose a pluralistic interpretation of empathy grounded in an understanding of the three parts of the mind: cognitive, affective, and conative. In fact, product designers already use empathy in their design processes. However, an exemplar of an empathic design is harder to find in civil engineering disciplines. This paper discusses an example of the Hoover Dam Bypass, which resulted in an award-winning design and construction that improved traffic flow, reduced vulnerability to terrorist attack, and accounted for historical factors and environmental impacts. However, this technical success is an empathic failure. Although project leaders commissioned ethnographic studies to understand the impact the bridge would have on the local Native American populations and their cultural sites, the eventual design showed little consideration of the concerns that were revealed. For engineering designs such as bridges, other infrastructure and systems to meet the needs of the various populations in which they serve, engineers need to incorporate empathy into their designs.
ContributorsVortherms, Kaitlin (Author) / Seager, Thomas (Thesis advisor) / Tracy, Sarah (Committee member) / Spierre/Clark, Susan (Committee member) / Arizona State University (Publisher)
Created2016