Matching Items (7)
Filtering by

Clear all filters

136415-Thumbnail Image.png
Description
The purpose of this project was to design a new railroad crossing for pedestrians and bicyclists in mid-block or urban areas. In order to develop a successful design, the needs of the railroad, the end-users, and the city governments were researched and converted into measurable engineering requirements. For the railroad

The purpose of this project was to design a new railroad crossing for pedestrians and bicyclists in mid-block or urban areas. In order to develop a successful design, the needs of the railroad, the end-users, and the city governments were researched and converted into measurable engineering requirements. For the railroad companies, the most important need was a crossing that presents an effective barrier to users while a train is in the area. For bicyclists and pedestrians (the end-users), the most important need was for the crossing to be both reliable and easily accessible. For the city governments, the most important need was a crossing that is inexpensive yet sturdy. The approach to this project was similar to the approach used in many engineering design processes. First is the Introduction, which provides an overview of the issue and presents the full problem statement. Next is the Research of Prior Art, which details the past solutions to railroad crossings as well as the 3 E's of railroad crossing safety. After this, the customer needs are discussed in the Needs to Requirements section and the process of converting these into measurable engineering requirements is shown. Next, various conceptual design options are shown in the Conceptual Design section and a final conceptual design is chosen based on adherence to the stated requirements. This final conceptual design is then taken into the preliminary design phase and refined until it becomes the final preliminary design. After the Final Preliminary Design Description, the Project Conclusions and Recommendations are presented. Due to time and monetary constraints, this project ends after the preliminary design stage. Despite this, the conclusion of this project is that the final design presented here will be successful if additional resources are obtained to move it forward into the detailed design phase. For now, this project has come to a halt due to UP's reluctance to allow any additional railroad crossings in the Phoenix and Tempe, Arizona areas. It is recommended that city officials and bicyclist/pedestrian action groups continue talks with UP until they agree to allow additional crossings to be built that are geared towards non-motorized users.
ContributorsJones, Mitchell Drexel (Author) / Kuby, Michael (Thesis director) / Lou, Yingyan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137229-Thumbnail Image.png
Description
The paper presents a new exhaust header design to replace the current design on Arizona State University's Formula SAE car. Also, the thought process of the design was presented as well as a method of analysis for tuning the exhaust headers. The equation presented was then compared with a computational

The paper presents a new exhaust header design to replace the current design on Arizona State University's Formula SAE car. Also, the thought process of the design was presented as well as a method of analysis for tuning the exhaust headers. The equation presented was then compared with a computational fluid dynamics model using ANSYS Fluent. It was found that the equation did not match the timing of the CFD model. However, the design does allow for simple changes to be made in order to reduce the length of the exhaust and allow for the correct tuning. Also, the design minimizes interference between the individual headers which is ideal to increase engine performance. The exhaust meets the Formula SAE regulations, and is designed to fit in the new chassis for the FSAE car that ASU will run in 2015. Recommendations were also made to further improve the design and analysis model.
ContributorsKaashoek, Kevin Jason (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134380-Thumbnail Image.png
Description
The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG

The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG cells and TEG setups were tested and analyzed, proof-of-concepts and prototypes were built. and the performance of the proof-of-concepts and prototypes were tested and analyzed as well. In order to test different TEG cells and TEG setups, a TEG testing apparatus was designed and fabricated. The apparatus is capable of comparing the performance of TEGs with temperature differentials up to 200 degrees C. Along with a TEG testing apparatus, several proof-of-concepts and prototypes were completed. All of these were tested in order to determine the feasibility of the design. All three proof-of-concepts were only capable of producing a voltage output less than 300mV. The prototype, however, was capable of producing a max output voltage of 17 volts. Although the prototype outperformed all of the proof-of-concepts, optimizations to the design can continue to improve the output voltage. In order to do so, stacked TEG tests were performed. After performing the stacked TEG tests, it was determined that the use of stacked TEGs depended on the Fresnel lens chosen. If BISTEG were to use a point focused Fresnel lens, using a stack of TEGs could increase the power density. If BISTEG were to utilize a linear focused Fresnel lens, however, the TEGs should not be stacked. It would be more efficient to lay them out side by side. They can be stacked, however, if the energy density needs to be increased and the costs of the additional TEGs are not an issue.
ContributorsPark, Andrew (Author) / Seager, Thomas (Thesis director) / Margaret, Hinrichs (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133280-Thumbnail Image.png
Description
This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering

This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering and its relation to academic education is examined. Next, program and project overviews of both the capstone senior design course and the InnovationSpace are detailed, followed by a comparison of the two course's curriculum. Finally, key differences are highlighted, and suggestions introduced that might serve to improve both courses in the future. The senior design capstone course was found to lack accountability and diversity leading to a lack of innovative solutions. However, the course simultaneously succeeded in maintaining wellaccepted traditional engineer practices and documentation. The InnovationSpace program on the other hand provides accountability, diversity, and modern approaches to product development.
ContributorsKennedy, Patrick Bernales (Author) / Kuhn, Anthony (Thesis director) / Hedges, Craig (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148488-Thumbnail Image.png
Description

Immersion has become a key buzzword in the theme park industry, with many themed lands and attractions being designed with this objective in mind. This paper defines immersion through the concept of the ironic imagination and examines its role in theme park attractions. A literature review was first conducted to

Immersion has become a key buzzword in the theme park industry, with many themed lands and attractions being designed with this objective in mind. This paper defines immersion through the concept of the ironic imagination and examines its role in theme park attractions. A literature review was first conducted to identify general design principles for the creation of immersive theme park attractions. Authentic settings that utilize all of the senses were considered first, along with a system of positive and negative cues for evaluating immersive experiences. The importance of simple and emotional stories was also addressed, before investigating the role that employees and guests play in an immersive attraction. Eight design principles were identified, and using these principles a blue sky design for an immersive theme park attraction was developed. An overview of the attraction is included and accompanied by an analysis of how the design principles were applied.

Created2021-05
147595-Thumbnail Image.png
Description

In this study, a scissor jack was structurally analyzed and compared to a FEA model to study the structure of the jack. the system was simplified to a 2D system, and one of the truss members was analyzed for yielding, fatigue, and buckling.

ContributorsLedalla, Aishwarya (Author) / Kosaraju, Srinivas (Thesis director) / Patel, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05