Matching Items (2)
Filtering by

Clear all filters

132798-Thumbnail Image.png
Description
Through the course of this project, I worked to redesign an underused and conveniently located space on the Arizona State University Polytechnic campus in such a way as to bring the benefits of nature to students spending time on-campus. This paper outlines how I used the ideas behind biophilia and

Through the course of this project, I worked to redesign an underused and conveniently located space on the Arizona State University Polytechnic campus in such a way as to bring the benefits of nature to students spending time on-campus. This paper outlines how I used the ideas behind biophilia and sensory gardens to provide visitors to the space the wholesome experience of nature in the small area of my selected location.It walks through the design process from site selection to the final planting plan, which considers not only the physical requirements of the plants but also their contribution to the space. I separated the chosen space into five distinct zones, each with their own purpose. Due to time constraints, I only produced planting and hardscape plans for three
of the five spaces. In redesigning this space, I placed emphasis on utilizing some methods for passive cooling and heating to preserve a comfortable environment throughout the year with minimal energy usage. These methods include protecting visitors from intense eastern, western, and overhead sun during the warmer months and using thermal masses to absorb heat during the day. For the landscape design component, I found plants whose colors, textures, and smells suited the purpose of each space and arranged them in such a way as to maximize the positive sensory effects of the plants. Because color in the
landscape was an essential component in parts of the design, I focused on providing yearlong color by staggering the bloom periods of different plants. In doing this, I devised a system to visually represent the bloom period of any given plant within the landscape plan. Finally, I generated a rough cost estimate for the materials needed to construct the site according to my hardscape and landscape plans.
ContributorsWestbay, Jobana (Author) / Thomas, Martin (Thesis director) / Cynthia, James-Richman (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132656-Thumbnail Image.png
Description
For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric arm, the fabric Soft Poly Limb (fSPL). For both arms I was responsible for the design of 3D printed components (molds, end caps, etc.) as well as the evaluation of the completed prototypes by comparing the actual performance of the arms to the finite element predictions. I contributed to the writing of two published papers describing the design and evaluation of the two arms. After the completion of the fSPL I attempted to create a quasi-static model of the actuators driving the fSPL.
ContributorsSparks, Curtis Mitchell (Author) / Sugar, Thomas (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05