Matching Items (251)
Filtering by
- Member of: Theses and Dissertations
- Member of: Barrett, The Honors College Thesis/Creative Project Collection
- Status: Published

This study is an initial step in exploring how urban design typologies can help inform community asset research to broaden the definition of physical assets. Asset based community development research identifies specific types of physical assets such as streets, structures, housing or vacant lots. This research argues that a comprehensive look at physical assets is needed, taking into consideration urban typologies such as paths, landmarks, views and districts as well as the spatial relationships that influence their significance. Community asset literature and conditions specific to the Sunnyslope community in Phoenix, Arizona suggest that differences in ethnicity such as spatial segregation, and socio-economic status exist. However, the literature does not address how these differences in ethnicity might influence residents' perceptions of physical assets. This study explores the questions - How do perceptions of physical assets vary among women of different ethnicities? What, if any, are the reasons behind these ethnic differences in perception? The research applied a survey instrument with open-ended and close-ended questions, and a map to mark frequently used routes. Assets identified by recoding open-ended responses were statistically analyzed for frequencies. The most frequently mentioned assets were analyzed by GIS for spatial relationships. Women of White and Latino ethnicities frequently chose individual buildings and locations as physical assets over paths, views, districts and landmarks. White women identified urban typologies as physical assets. In contrast, Latino women identified no significant urban typologies as assets. The inclusion of urban typologies confirmed and expanded upon physical assets previously identified by other asset-based studies on the community of Sunnyslope. Notable differences in ethnicity were found in the perception of physical assets of economic significance, assets for use and assets of visual appeal. Besides ethnicity, age and proximity to assets also influenced asset perception of White and Latino women. Community organizations need to take into consideration the ethnic differences in perception of physical assets, in the context of culture, spatial segregation and differing family structures. The inclusion of urban typologies helped highlight the differences in ethnicities for physical assets of visual appeal, and the use of leisure and recreation facilities.

Traditional design education consists of three phases: perceptual, transitional, and professional. This study explored three independent variables (IVs) as predictors of success in the Transitional Phase of a visual communication design (VCD) program: (a) prior academic performance (as reported by GPA); (b) cognitive style (assessed with Peterson, Deary, and Austin's Verbal Imagery Cognitive Styles Test [VICS] and Extended Cognitive Style Analysis-Wholistic Analytic Test [E-CSA-WA]); and (c) learning style (assessed with Kolb's Learning Style Inventory [LSI] 3.1). To address the research problem and hypothesis, this study examined (a) the relationship between academic performance, cognitive style, and learning style, and visual communication design students' performance in the Transitional Phase; (b) the cognitive style and learning style preferences of visual communication design students as compared with other samples; and (c) how the resulting knowledge can be used to improve instructional design for the Transitional Phase in VCD programs. Multiple regression analysis revealed that 9% of Transitional Phase performance was predicted by studio GPA. No other variables were statistically significant predictors of Transitional Phase performance. However, ANOVA and t tests revealed statistically significant and suggested relationships among components of the independent variables, that indicate avenues for future study. The results are discussed in the context of style-based learning theory, and the cognitive apprenticeship approach to instructional design.

The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.

Industrial design is the practice of creating solutions by studying people and businesses. Originally centered on development of goods, industrial design uses methods rooted in human behavioral study, human factors, and strategic problem solving. As our economy and professional practice shift away from manufacturing towards a service-dominant landscape, industrial design must align its profession to formally include service design. The small service business setting is a microcosm in which the value of design and branding in business is magnified. This research reinforces design's ties with services marketing and business and is dedicated to finding solutions for the backbone of our economy. Micro-businesses with fewer than 20 employees often lack the sophisticated management, marketing, and strategies that bring about success. Despite the fact that 70% to 80% of small and micro businesses are service based, little research is dedicated to unique strategies for these small service firms. Research has shown that using strategic business design increases small business success. Given high small business failure rates, it behooves entrepreneurs to use intuitive planning tools that are appropriate for the dynamic startup years. When put within reach and context of small business owners, the tools used in design draw a clear map of insights into the "design" of small businesses. Through a literature review, interviews, and a new workshop method, the needs of small business owners and the challenges they face are used to design and implement an accessible, actionable strategic toolkit for small service businesses. This simple, interdisciplinary toolkit was designed with the goal of increasing the efficacy and likelihood of ongoing strategic business planning through context-specific, instrumental activities. The tools are shown to help a business owner form pragmatic, iterative problem-solving approaches that allow the business owner to plan in the face of uncertainty and find insights into her own business, brand, and services.

In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive visual element, they can be costly and challenging to maintain for building owners. Alternatively, fixed solar-shading systems can be designed to create dynamism in the façade of the building, while providing similar functionalities for sun control. The work presented in this project focuses on the use of a visual scripting editor for modeling software, Grasshopper, to develop a Solar Control Visual Script that evaluates building envelope surfaces with planar and non-uniform rational basis-spline (NURBS) forms and provides projections for fixed sun control systems. The design platform of Grasshopper allows individuals with no experience or prior computer coding education to build up programming-like capabilities; this feature permits users to discover new design possibilities within flexible frames that can contribute to the overall design being pursued, while also having an environmental response. The Solar Control Visual Script provides minimum sizing geometries that achieve shading in openings at a particular date and time of the year. The model for this method of analysis makes use of three components to derive the appropriate values for the projections of shading geometries: typical meteorological year (TMY) data, irradiation isotropic equations and shading profile angles equations for vertical and tilted surfaces. Providing an automatic visual of generated geometries uncovers the opportunity to test several model forms and reiterates the analysis when modifying control parameters. By employing building science as a set of environmental parameters, the design outcome bears a dynamic form that responds to natural force conditions. The optimized results promote an efficient environmental design solution for sun control as an integral alternative into the building envelope.

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains at which a balance takes place between the fatigue damage during loading, and the healing during the rest periods between loading pulses. The viscoelastic continuum damage model was used to isolate time dependent damage and healing in hot mix asphalt from that due to fatigue. This study also included the development of a uniaxial fatigue test method and the associated data acquisition computer programs to conduct the test with and without rest period. Five factors that affect the fatigue and healing behavior of asphalt mixtures were evaluated: asphalt content, air voids, temperature, rest period and tensile strain. Based on the test results, two Pseudo Stiffness Ratio (PSR) regression models were developed. In the first model, the PSR was a function of the five factors and the number of loading cycles. In the second model, air voids, asphalt content, and temperature were replaced by the initial stiffness of the mix. In both models, the endurance limit was defined when PSR is equal to 1.0 (net damage is equal to zero). The results of the first model were compared to the results of a stiffness ratio model developed based on a parallel study using beam fatigue test (part of the same NCHRP 9-44A). The endurance limit values determined from uniaxial and beam fatigue tests showed very good correlation. A methodology was described on how to incorporate the second PSR model into fatigue analysis and damage using the DARWin-ME software. This would provide an effective and efficient methodology to design perpetual flexible pavements.

The purpose of this study was to construct an instructional systems design model for chemistry teaching laboratories at the undergraduate level to accurately depict the current practices of design experts. This required identifying the variables considered during design, prioritizing and ordering these variables, and constructing a model. Experts were identified by multiple publications in the Journal of Chemical Education on undergraduate laboratories. Twelve of these individuals participated in three rounds of Delphi surveys. An initial literature review was used to construct the first survey, which established the variables of design. The second and third surveys were constructed based on the answers from the previous survey and literature review. The second survey determined the priority and order of the variables, and the third survey allowed the participating experts to evaluate the preliminary design model. The results were validated by interviewing three additional experts who had not participated in the surveys. The first round survey produced 47 variable themes identified by the experts as being important to chemistry laboratory design. Of these, 46 variable themes were determined to be important based on their responses to the second-round survey. Second-round survey results were used to determine the order in which participants consider the themes, allowing for construction of a preliminary design model. In the third round, participants found the model to be accurate, organized appropriately, easy to understand, and useful. Interviews supported these results. The final design model included five main phases with individual considerations or steps. These five phases were named planning, development, implementation, revision, and evaluation. The first four phases form a cyclic process, and they are supported by the continuous evaluation phase. The strengths of the model developed in this study include the participation of experts within the field, the ability of the model to start discussions regarding design, and the high level of agreement on the final model. This model could be refined and evaluated to determine its efficacy in assisting novice or expert designers in creating and improving experiments that support learning. The method used in this study could be used for model development in other fields.

Digital Fabrication has played a pivotal role in providing reality to industrial designers' ideas since its first commercial use in late 80's. Making the final prototype of a design project has been the initial assumed use for these technologies in the design process. However, new technology advances in this area offer further opportunities for designers. In this research these opportunities have been carefully explored. This research will be conceptualized through discussing the findings of a case study and theories in the areas of Industrial Design methodology, digital fabrication, and design pedagogy. Considering the span of digital fabrication capabilities, this research intends to look into the design-fabrication relation from a methodology perspective and attempts to answer the question of how the digital fabrication methods can be integrated into the Industrial Design process to increase the tangibility of the design process in very first steps. It will be argued that the above is achievable in certain design topics - i.e. those with known components but unknown architecture. This will be studied through the development of series of hypothetical design processes emphasizing the role of digital fabrication as an ideation tool rather than a presentation tool. In this case study, two differing processes have been developed and given to Industrial Design students to design specific power tools. One of them is developed based on the precedence of digital fabrication. Then the outcome of the two processes is compared and evaluated. This research will introduce the advantages of using the digital fabrication techniques as a powerful ideation tool, which overcomes the imagination problems in many of complicated design topics. More importantly, this study suggests the criteria of selecting the proposed design methodology. It is hoped that these findings along with the advances in the area of additive and subtractive fabrication will assist industrial designers to create unique methodologies to deal with complicated needs both in practice and design education.

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

Despite public demand for climate change mitigation and natural open space conservancy, existing political and design efforts are only beginning to address the declining efficacy of the biotic carbon pool (C-pool) to sequester carbon. Advances in understanding of biogeochemical processes have provided methods for estimating carbon embodied in natural open spaces and enhancing carbon sequestration efficacy. In this study, the benefits of carbon embodied in dryland open spaces are determined by estimating carbon flux and analyzing ecological, social, and economic benefits provided by sequestered carbon. Understanding the ecological processes and derived benefits of carbon exchange in dryland open spaces will provide insight into enhancing carbon sequestration efficacy. Open space carbon is estimated by calculating the amount of carbon sequestration (estimated in Mg C / ha / y) in dryland open space C-pools. Carbon sequestration in dryland open spaces can be summarized in five open space typologies: hydric, mesic, aridic, biomass for energy agriculture, and traditional agriculture. Hydric (wetland) systems receive a significant amount of moisture; mesic (riparian) systems receive a moderate amount of moisture; and aridic (dry) systems receive low amounts of moisture. Biomass for energy production (perennial biomass) and traditional agriculture (annual / traditional biomass) can be more effective carbon sinks if managed appropriately. Impacts of design interventions to the carbon capacity of dryland open space systems are calculated by estimating carbon exchange in existing open space (base case) compared to projections of carbon sequestered in a modified system (prototype design). A demonstration project at the Lower San Pedro River Watershed highlights the potential for enhancing carbon sequestration. The site-scale demonstration project takes into account a number of limiting factors and opportunities including: availability of water and ability to manipulate its course, existing and potential vegetation, soil types and use of carbon additives, and land-use (particularly agriculture). Specific design challenges to overcome included: restoring perennial water to the Lower San Pedro River, reestablishing hydric and mesic systems, linking fragmented vegetation, and establishing agricultural systems that provide economic opportunities and act as carbon sinks. The prototype design showed enhancing carbon sequestration efficacy by 128-133% is possible with conservative design interventions.