Matching Items (270)
Filtering by

Clear all filters

151882-Thumbnail Image.png
Description
Scholars have written much about home and meaning, yet they have said little about the professionally furnished model home viewed as a cultural artifact. Nor is there literature addressing how the home building industry uses these spaces to promote images of family life to increase sales. This research notes that

Scholars have written much about home and meaning, yet they have said little about the professionally furnished model home viewed as a cultural artifact. Nor is there literature addressing how the home building industry uses these spaces to promote images of family life to increase sales. This research notes that not only do the structure, design, and layout of the model home formulate cultural identity but also the furnishings and materials within. Together, the model home and carefully selected artifacts placed therein help to express specific chosen lifestyles as that the home builder determines. This thesis considers the model home as constructed as well as builder's publications, descriptions, and advertisements. The research recognizes the many facets of merchandising, consumerism, and commercialism influencing the design and architecture of the suburban home. Historians of visual and cultural studies often investigate these issues as separate components. By contrast, this thesis offers an integrated framework of inquiry, drawing upon such disciplines as cultural history, anthropology, and material culture. The research methodology employs two forms of content analysis - image and text. The study analyzes 36 model homes built in Phoenix, Arizona, during the period 1955-1956. The thesis explores how the builder sends a message, i.e. images, ideals, and aspirations, to the potential home buyer through the design and decoration of the model home. It then speculates how the home buyer responds to those messages. The symbiotic relationship between the sender and receiver, together, tells a story about the Phoenix lifestyle and the domestic ideals of the 1950s. Builders sent messages surrounding convenience, spaciousness, added luxury, and indoor-outdoor living to a growing and discriminating home buying market.
ContributorsGolab, Coreen R (Author) / Brandt, Beverly K. (Thesis advisor) / Bernardi, Jose (Committee member) / Schleif, Corine (Committee member) / Arizona State University (Publisher)
Created2013
152238-Thumbnail Image.png
Description
Many of the scholars that have chronicled the creation of the modern American kitchen have written about how the technological, societal, and cultural revolutions of the twentieth century played a role in dramatically changing its structure and design. More recently, some scholarly research has focused on the evolution of the

Many of the scholars that have chronicled the creation of the modern American kitchen have written about how the technological, societal, and cultural revolutions of the twentieth century played a role in dramatically changing its structure and design. More recently, some scholarly research has focused on the evolution of the kitchen and its meaning over time. In several of these research publications scholars profess that the modern American kitchen, more than any other room, has come to symbolize the center or heart of the home, and the warmest room in the house. However, they are quick to acknowledge that, at the beginning of the twentieth century, the kitchen was not so fondly regarded. Little research exists regarding why individuals increasingly became attached to the kitchen or how that attachment influenced the layout, size, objects, and activities conducted in the kitchen. This thesis fills this void by exploring the implications of place attachment on the evolution of the American kitchen from 1901 through 1964. By approaching this research from a combination of design history and environmental psychology, this thesis provides a new perspective to our understanding of the evolution of kitchen design. Using this two-pronged approach, this study contributes to our understanding of the evolution of the kitchen. This study traces the evolution of the modern American kitchen using two qualitative methodologies: material culture and phenomenology. Drawing from a variety of floor plans, advertisements, and articles contained in the House Beautiful magazine 1901 through 1964, as well as writings from popular domestic advisors of the period, this thesis charts the transformation of the modern American kitchen from a "hell on earth" into the "heart and soul of the home." By combining place attachment theory and kitchen design research this thesis provides interior designers new insight into designing kitchens that foster endearing emotional attachment for our clients.
ContributorsTassell, Toni J (Author) / Brandt, Beverly (Thesis advisor) / Heywood, William (Thesis advisor) / Warren-Findley, Janelle (Committee member) / Arizona State University (Publisher)
Created2013
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
152129-Thumbnail Image.png
Description
The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with

The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with desired levels quality assurance envisioned to satisfy emerging regenerative medicine market needs. , As such, this study encompassed a more systematic, rational design of experiment (DOE) approach toward the identification of electrospinning process conditions responsible for the production of dextran-polyacrylic acid (DEX-PAA) nanoscaffolds with desired architectures and tissue engineering properties. The latter includes scaffold fiber diameter, pore size, porosity, and degree of crosslinking that together can provide a range of scaffold nanomechanical properties that closely mimics the cell microenvironment. The results obtained from this preliminary DOE study indicate that there exist electrospinning operation conditions capable of producing Dex-PAA nanoarchitecture having potential utility for regenerative medicine applications.
ContributorsEspinoza, Roberta (Author) / Pizziconi, Vincent (Thesis advisor) / Massia, Stephen (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2013
152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
ContributorsSeyedmadani, Kimia (Author) / Pizziconi, Vincent (Thesis advisor) / Towe, Bruce (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152243-Thumbnail Image.png
Description
There is a popular notion that creativity is highly valued in our culture. However, those "in the trenches," people in creative endeavors that actually produce the acts of creativity, say this is not so. There is a negative correlation between the value stated and the true value placed on creativity

There is a popular notion that creativity is highly valued in our culture. However, those "in the trenches," people in creative endeavors that actually produce the acts of creativity, say this is not so. There is a negative correlation between the value stated and the true value placed on creativity by our contemporary culture. The primary purpose of this study was to investigate that correlation as well as a possible contributing factor to this negative correlation--the fear of risk involved in enacting and accepting creativity. The methods used in this study were literature review and interview. An extensive literature review was done, as much has been written on creativity. The review was done in four parts: 1) the difficulty in defining creativity; 2) fear and the fear of creativity; 3) solutions - ways to be, express, and accept creativity; and 4) the plethora of articles written about creativity. Six one-on-one interviews were conducted with creative individuals from a variety of commercial creative endeavors. Creatives in commercial fields were chosen specifically because of their ability to influence the culture. The results of this study showed that the hypothesis, that there is a negative correlation between the value stated and the true value placed on creativity, is true. The fear of risk involved in enacting and accepting creativity as a factor in this dichotomy was also shown to be true.
ContributorsGelman, Howard P (Author) / Heywood, Wil (Thesis advisor) / Patel, Mookesh (Committee member) / Knox, Gordon (Committee member) / Arizona State University (Publisher)
Created2013
151895-Thumbnail Image.png
Description
Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.
ContributorsCarpenter, Anne Therese (Author) / Olson, Larry (Thesis advisor) / Hild, Nicholas (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2013
151904-Thumbnail Image.png
Description
Objective: The aim of this research is to uncover, via a comprehensive cross study analysis, data patterns that could potentially point to a positive correlation between two main variables: anesthetic monitoring equipment and anesthetic decision making. Of particular interest is the equipment's monitor screen and the extent to which its

Objective: The aim of this research is to uncover, via a comprehensive cross study analysis, data patterns that could potentially point to a positive correlation between two main variables: anesthetic monitoring equipment and anesthetic decision making. Of particular interest is the equipment's monitor screen and the extent to which its user interface design influences anesthetic situation awareness (SA) and hence, decision making. It is hypothesized that poor anesthetic diagnosis from inadequate SA may be largely attributable to patient data displays lacking in human factors design considerations. Methods: A systematic search was conducted of existing empirical studies pertaining to patient physiologic monitoring that spanned across interrelated domains, namely, ergonomics, medical informatics, visual computing, cognitive psychology, human factors, clinical monitoring, intensive care medicine, and intelligent systems etc. all published in scholarly research journals between 1970 to August 2012. Anesthetic-related keywords were queried i.e. anesthetic mishaps, patient physiological data displays, anesthetic vigilance etc. (found in Appendix A). This approach yielded a few thousand results, of which 65 empirical studies were pulled. Further extraction of articles having direct connection to the use of data displays within the anesthetic context produced a total of 20 empirical studies. These studies were grouped under two broad categories of Monitoring and Monitors whereby factors directly contributing to the studies' results were identified with the aim to find emerging themes that provide insights involving interface design and medical decision making. Results: There is a direct correlation between user-interface design and decision making. The situation awareness (SA) required for decision making heavily relies upon data displays oriented towards information extraction and integration. In the systematic assessment of empirical studies, it is undeniable how strikingly prominent visual attributes show up as contributing factors to subjects' enhanced performance in the studies. Conclusions: How and to what users direct their perceptual and cognitive resources necessarily influence their perception of the environment, and by extension, their development of situation awareness (SA). Although patient monitoring equipment employed in anesthetic practice has proven to be indispensable in quality patient care, graphical representations of patient data is still far from optimal in the clinical setting. User-interfaces that lend decision support to facilitate SA and subsequent decision making is critical in crisis management.
ContributorsNguyen, Angie (Author) / Velasquez, Joseph (Thesis advisor) / McDermott, Lauren (Thesis advisor) / Herring, Don (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
152044-Thumbnail Image.png
Description
Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise,

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.
ContributorsKhunti, Hitesh Devshi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013