Matching Items (1,113)
Filtering by

Clear all filters

152021-Thumbnail Image.png
Description
Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature

Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3NH3) as an internal hydrogen source were employed in the search for new hydrogen-dominant materials. Ammonia borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62- entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.
ContributorsPuhakainen, Kati (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Kouvetakis, John (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
151882-Thumbnail Image.png
Description
Scholars have written much about home and meaning, yet they have said little about the professionally furnished model home viewed as a cultural artifact. Nor is there literature addressing how the home building industry uses these spaces to promote images of family life to increase sales. This research notes that

Scholars have written much about home and meaning, yet they have said little about the professionally furnished model home viewed as a cultural artifact. Nor is there literature addressing how the home building industry uses these spaces to promote images of family life to increase sales. This research notes that not only do the structure, design, and layout of the model home formulate cultural identity but also the furnishings and materials within. Together, the model home and carefully selected artifacts placed therein help to express specific chosen lifestyles as that the home builder determines. This thesis considers the model home as constructed as well as builder's publications, descriptions, and advertisements. The research recognizes the many facets of merchandising, consumerism, and commercialism influencing the design and architecture of the suburban home. Historians of visual and cultural studies often investigate these issues as separate components. By contrast, this thesis offers an integrated framework of inquiry, drawing upon such disciplines as cultural history, anthropology, and material culture. The research methodology employs two forms of content analysis - image and text. The study analyzes 36 model homes built in Phoenix, Arizona, during the period 1955-1956. The thesis explores how the builder sends a message, i.e. images, ideals, and aspirations, to the potential home buyer through the design and decoration of the model home. It then speculates how the home buyer responds to those messages. The symbiotic relationship between the sender and receiver, together, tells a story about the Phoenix lifestyle and the domestic ideals of the 1950s. Builders sent messages surrounding convenience, spaciousness, added luxury, and indoor-outdoor living to a growing and discriminating home buying market.
ContributorsGolab, Coreen R (Author) / Brandt, Beverly K. (Thesis advisor) / Bernardi, Jose (Committee member) / Schleif, Corine (Committee member) / Arizona State University (Publisher)
Created2013
151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
ContributorsYuan, Lei (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Xue, Guoliang (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
152238-Thumbnail Image.png
Description
Many of the scholars that have chronicled the creation of the modern American kitchen have written about how the technological, societal, and cultural revolutions of the twentieth century played a role in dramatically changing its structure and design. More recently, some scholarly research has focused on the evolution of the

Many of the scholars that have chronicled the creation of the modern American kitchen have written about how the technological, societal, and cultural revolutions of the twentieth century played a role in dramatically changing its structure and design. More recently, some scholarly research has focused on the evolution of the kitchen and its meaning over time. In several of these research publications scholars profess that the modern American kitchen, more than any other room, has come to symbolize the center or heart of the home, and the warmest room in the house. However, they are quick to acknowledge that, at the beginning of the twentieth century, the kitchen was not so fondly regarded. Little research exists regarding why individuals increasingly became attached to the kitchen or how that attachment influenced the layout, size, objects, and activities conducted in the kitchen. This thesis fills this void by exploring the implications of place attachment on the evolution of the American kitchen from 1901 through 1964. By approaching this research from a combination of design history and environmental psychology, this thesis provides a new perspective to our understanding of the evolution of kitchen design. Using this two-pronged approach, this study contributes to our understanding of the evolution of the kitchen. This study traces the evolution of the modern American kitchen using two qualitative methodologies: material culture and phenomenology. Drawing from a variety of floor plans, advertisements, and articles contained in the House Beautiful magazine 1901 through 1964, as well as writings from popular domestic advisors of the period, this thesis charts the transformation of the modern American kitchen from a "hell on earth" into the "heart and soul of the home." By combining place attachment theory and kitchen design research this thesis provides interior designers new insight into designing kitchens that foster endearing emotional attachment for our clients.
ContributorsTassell, Toni J (Author) / Brandt, Beverly (Thesis advisor) / Heywood, William (Thesis advisor) / Warren-Findley, Janelle (Committee member) / Arizona State University (Publisher)
Created2013
152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152189-Thumbnail Image.png
Description
This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’

This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’ test scores as outcome variables and teachers’ contributions as random effects to ascribe changes in student performance to the teachers who have taught them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP). This approach is limited by the adequacy of the assumed model specification with respect to the unknown underlying model. In that regard, this study proposes alternative ways to rank teacher effects that are not dependent on a given model by introducing two variable importance measures (VIMs), the node-proportion and the covariate-proportion. These VIMs are novel because they take into account the final configuration of the terminal nodes in the constitutive trees in a random forest. In a simulation study, under a variety of conditions, true rankings of teacher effects are compared with estimated rankings obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs from the assumed linear model specification. The newly proposed VIMs outperform all others in various scenarios where the model was misspecified. The second study develops two novel interaction measures. These measures could be used within but are not restricted to the VAM framework. The distribution-based measure is constructed to identify interactions in a general setting where a model specification is not assumed in advance. In turn, the mean-based measure is built to estimate interactions when the model specification is assumed to be linear. Both measures are unique in their construction; they take into account not only the outcome values, but also the internal structure of the trees in a random forest. In a separate simulation study, under a variety of conditions, the proposed measures are found to identify and estimate second-order interactions.
ContributorsValdivia, Arturo (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Broatch, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
152243-Thumbnail Image.png
Description
There is a popular notion that creativity is highly valued in our culture. However, those "in the trenches," people in creative endeavors that actually produce the acts of creativity, say this is not so. There is a negative correlation between the value stated and the true value placed on creativity

There is a popular notion that creativity is highly valued in our culture. However, those "in the trenches," people in creative endeavors that actually produce the acts of creativity, say this is not so. There is a negative correlation between the value stated and the true value placed on creativity by our contemporary culture. The primary purpose of this study was to investigate that correlation as well as a possible contributing factor to this negative correlation--the fear of risk involved in enacting and accepting creativity. The methods used in this study were literature review and interview. An extensive literature review was done, as much has been written on creativity. The review was done in four parts: 1) the difficulty in defining creativity; 2) fear and the fear of creativity; 3) solutions - ways to be, express, and accept creativity; and 4) the plethora of articles written about creativity. Six one-on-one interviews were conducted with creative individuals from a variety of commercial creative endeavors. Creatives in commercial fields were chosen specifically because of their ability to influence the culture. The results of this study showed that the hypothesis, that there is a negative correlation between the value stated and the true value placed on creativity, is true. The fear of risk involved in enacting and accepting creativity as a factor in this dichotomy was also shown to be true.
ContributorsGelman, Howard P (Author) / Heywood, Wil (Thesis advisor) / Patel, Mookesh (Committee member) / Knox, Gordon (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151895-Thumbnail Image.png
Description
Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.
ContributorsCarpenter, Anne Therese (Author) / Olson, Larry (Thesis advisor) / Hild, Nicholas (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2013