Matching Items (236)

Filtering by

Clear all filters

133729-Thumbnail Image.png

Rebuit: Encouraging Stability and a Sense of Home for Those Who have been Displaced

Description

Rebuilt is a project that looks to understand what Syrian refugees experience in camps, specifically Za'atari, the world's largest Syrian camp. The intent of Rebuilt was to create a product that would help their living conditions. By applying Design Thinking

Rebuilt is a project that looks to understand what Syrian refugees experience in camps, specifically Za'atari, the world's largest Syrian camp. The intent of Rebuilt was to create a product that would help their living conditions. By applying Design Thinking & Process, Rebuilt ultimately yielded a room partition system to help improve the living conditions of refugees. To design a product for a world most of the world is ignorant of, research is paramount. Research for Rebuilt involved gather many facts from various international databases, such as UNHCR and Mercy Corps. By understanding the demographics, the culture, and needs, Rebuilt was able to focus on some key points that lead to a potential design project: over half of the camp is consisted of adolescents (under age 18), and are living in small, essentially shipping-container homes, and the environment of the Jordanian desert where the camp is situated is extremely variable between freezing winters and blistering summers. Looking over the resources provided by humanitarian organizations, Rebuilt pinpointed a missing niche product that could help the living conditions of refugee's lives: a room partition system that could regulate ambient temperatures. The need for private space is important for the development of a refugee adolescent as it encourages stability and a sense of home. Ambient temperature is also vastly important for the productivity and health of anyone. Rebuilt is consisted of two main parts: the design of a bracket that could be used to accommodate the widths of multiple building materials and would be cheap to manufacture, and a pre-made panel that incorporated the use of phase-change-material technology. The design process is documented with a finalized design that should be low-cost and light-weight to ship from manufacturers to those in need.

Contributors

Agent

Created

Date Created
2018-05

133652-Thumbnail Image.png

A Mobile Health Application for Tracking Patients' Health Record

Description

Title: A Mobile Health Application for Tracking Patients' Health Record Abstract Background: Mobile Health (mHealth) has recently been adopted and used in rural communities in developing countries to improve the quality of healthcare in those areas. Some organizations use mHealth

Title: A Mobile Health Application for Tracking Patients' Health Record Abstract Background: Mobile Health (mHealth) has recently been adopted and used in rural communities in developing countries to improve the quality of healthcare in those areas. Some organizations use mHealth application to track pregnancy and provide routine checkups for pregnant women. Other organizations use mHelath application to provide treatment and counseling services to HIV/AIDs patients, and others are using it to provide treatment and other health care services to the general populations in rural communities. One organization that is using mobile health to bring primary care for the first time in some of the rural communities of Liberia is Last Mile Health. Since 2015, the organization has trained community health assistants (CHAs) to use a mobile health platform called Data Collection Tools (DCTs). The CHAs use the DCT to collect health data, diagnose and treat patients, provide counseling and educational services to their communities, and for referring patients for further care. While it is true that the DCT has many great features, it currently has many limitations such as data storage, data processing, and many others. Objectives: The goals of this study was to 1. Explore some of the mobile health initiatives in developing countries and outline some of the important features of those initiatives. 2. Design a mobile health application (a new version of the Last Mile Health's DCT) that incorporates some of those features that were outlined in objective 1. Method: A comprehensive literature search in PubMed and Arizona State University (ASU) Library databases was conducted to retrieve publications between 2014 and 2017 that contained phrases like "mHealth design", "mHealth implementation" or "mHealth validation". For a publication to refer to mHealth, the publication had to contain the term "mHealth," or contains both the term "health" and one of the following terms: mobile phone, cellular phone, mobile device, text message device, mobile technology, mobile telemedicine, mobile monitoring device, interactive voice response device, or disease management device. Results: The search yielded a total of 1407 publications. Of those, 11 publications met the inclusion criteria and were therefore included in the study. All of the features described in the selected articles were important to the Last Mile Health, but due to issues such as internet accessibility and cellular coverage, only five of those features were selected to be incorporated in the new version of the Last Mile's mobile health system. Using a software called Configure.it, the new version of the Last Mile's mobile health system was built. This new system incorporated features such as user logs, QR code, reminder, simple API, and other features that were identified in the study. The new system also helps to address problems such as data storage and processing that are currently faced by the Last Mile Health organization.

Contributors

Agent

Created

Date Created
2018-05

Peertkat: A personalized note taking buddy.

Description

“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not

“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading, but in problem solving as well. The 2012 Program for International Student Assessment (PISA) test examined 44 countries’ students’ problem-solving abilities — American students landed just above the average, but they still scored below many other developed countries, including Britain, Singapore, Korea, Japan, China and Canada” (Bertram, 2015).
Lack of quality education, busy households, and limited time and money can all be factors of why children are not academically supported. What would it look like if children had access to a tool that helped them catch up if they fall behind? A tool that empowers children to solve academic and real-world world problems will help strengthen different cognitive and behavioral skills as well as create a more personalized educational experience, inside the classroom and out. This tool can be applied to the way we look at our formal academic education to help build new, creative problem solving strategies that are tailored to each student’s preferred ways of learning.

Proposed Research

My research is driven by the following question:

How do we create a tool for students that will help them maneuver busy and over-populated classrooms to help them learn better?

I am interested in studying the ways in which children in the age range of 11-14 play, specifically through video gaming, and using this influence to promote learning. By using children’s gaming interests to inspire education, they will be more inclined to participate in learning activities in the classroom. By exploring and observing how children problem solve in gaming, I will be able to pull techniques and methods from play in order to enhance critical learning. This project will begin in mid-May, and will continue after my thesis defense when I take this project into the workforce and am applying for jobs.
Methods
I will be taking a mixed methods approach to my research by using a combination of:
Qualitative methods: Observational data will be collected in many ways including but not limited to sketches, photography, writing, and film. After gathering base-level observational data I plan to use this, as well as my prototypes from the early phases of my product’s life to create a study to better understand users’ preferences with my product. This will include different colors, ergonomic shapes, part lines, and more to allow for a large range of feedback.
Surveys and interviews: I wish to interview and survey policymakers, educators, students, and other stakeholders invested in education to better understand their needs, in order to ensure that my product is feasible in the eyes of policymakers. It is important that my specific product not only serve as a tool for students, but also for teachers to learn as well. Making this product as something practical and scalable is important in terms of feasibility.
Thematic groups: Observing user groups interacting with my product/project will help me adjust to my general end goals.

Actionable Insights

After gathering data from interviews, surveys, observations, and product feedback, I plan to analyze this data and make sufficient changes to my project in order to better serve the community in which I am trying to benefit. Doing this will help my project be more effective and impactful.

Limitations will depend on rules on photography and interviewing. The timeline of the analysis of the data collected will be similar to the timeline provided for the senior studio class for traditional industrial design students.
Expected Outcomes
The proposed research will strengthen my design skills and expand my knowledge as a design student interested in the user experience, wellbeing, access to arts education, and much more. I will have a final outcome of a physical product that will be used as an initiative to help children studying STEM subjects to find new, creative, and different ways of solving problems.
Timeline
As I will be doing this project in congruency with my senior industrial design studio, my schedule has been roughly predetermined.
April-August
Literature review and preliminary research will be taken care of during this part of my thesis project. I will also be contacting people I would like to see be involved in this project during this time.
August-December
Research
1. Exploration
a. Assign01: Mind map + Visit the world
b. Assign02: Observations + Interviews
2. Making sense of the data + Concepts
a. Assign03: POG + Ideation
b. Assign04: Concept Evaluation + Selection
c. Partner School Determined
3. Concept Direction + Customer Validation + Research Summary
a. Assign05: Hard device and Screen Mock-ups + Customer Feedback
b. Assign06: Mid-term presentation of research + Life-Cycle
Design
1. Form Development + Drivers
a. Assign07: Design Language + Out into the World
b. Assign08: Product Details + Function
c. Wire frames Due
2. Study Models + CAD Model
a. Assign09: Refined 3D Study Model
b. Assign10: CAD Model + Tech Drawings
c. Running Step-Through
3. Design Validation + Refinement
a. Assign11: Persona Check +CMF + Features & Benefits
4. Storyboard Development + Visual Poster
a. Assign12: Storyboard + Life of Product
b. Assign13: Poster + Presentation Outline
c. Assign14: Product Animation
5. Final Presentation
a. Assign15: Process Book
b. Assign16: Public presentation
December-January
This is the time I will use to have my code built out a bit more. I will come back into the next semester with a code that functions in my form that I have decided on.
January-May
This time will be used to run user tests on my product, and make desired changes to it in order to fully iterate and design my concept well and with data-driven desires.
Meetings
I plan to meet with my studio professor, Dosun Shin, once every two weeks to discuss how my project is progressing. My second committee member will be Dean Bacalzo. My committee will be contacted on a monthly basis by way of email with updates on my project’s process. From there I will be able to ask for suggestions and schedule meeting times to further discuss my project.

References
Educational Ecosystems for Societal Transformation

Why STEM? Success Starts With Critical Thinking, Problem-Solving Skills
https://www.wired.com/insights/2014/06/stem-success-starts-critical-thi…
Unlocking Creativity: Teaching across the Curriculum

How the Founder of All Girls Code Is Shaking Up STEM in the Middle East
https://www.jnj.com/personal-stories/the-road-to-devex-aya-mouallem-dis…

Case Study: A game for conflict-affected youth to learn and grow
https://blogs.unity3d.com/2018/06/13/case-study-a-game-for-conflict-aff…

Vice Charter School vs Public School
https://www.theatlantic.com/science/archive/2016/10/the-weak-evidence-b…

Think brain games make you smarter? Think again, FSU researchers sayhttp:/
ews.fsu.edu
ews/health-medicine/2017/04/17/think-brain-games-make-smarter-think-fsu-researchers-say/
About STEAM Edu
https://steamedu.com/about-us/
Brain Games Don’t Work
http://fortune.com/2017/07/10/brain-games-research-lumosity/

Pip is a portable gaming device that teaches children to codehttps://www.dezeen.com/2017/12/05/pip-portable-gaming-device-teaches-ch…
Latest STEM learning kits for kids combine technology and play doughhttps://www.dezeen.com/2017/06/06/stem-learning-kits-kids-combine-techn…
3 Ways To Design Toys That Boost Kids’ Creativityhttps://www.fastcodesign.com/1669691/3-ways-to-design-toys-that-boost-k…
Plobot for STEAM
https://www.behance.net/gallery/45476023/Plobot

Global Education Futures Report
http://futuref.org/educationfutures
Xbox Adaptive Controllerhttps://www.xbox.com/en-US/xbox-one/accessories/controllers/xbox-adapti…
2018 US Video Game Market Predictionshttps://www.npd.com/wps/portal
pd/us/blog/2018/2018-us-video-game-market-predictions/
Kids and Violence in the Media
https://www.parenting.com/article/media-violence-children
YouTubers Talk About Their Favorite Games
https://www.youtube.com/watch?v=D3wFuqzzwdk

https://www.ideo.com/case-study/giving-ed-tech-entrepreneurs-a-window-i…
https://www.ideo.com/case-study/for-kids-a-new-tactile-way-to-learn-cod…
https://www.youtube.com/watch?v=uwskPyYEH2I&feature=youtu.be
https://www.kerbalspaceprogram.com/en/?page_id=11

Contributors

Agent

Created

Date Created
2019-05

132546-Thumbnail Image.png

Bridge: Embracing the Elderly with Empathetic Design

Description

Bridge is a device that relieves anxiety for people who care for the elderly. It has the face of the analog watch and the inner workings of a smart watch which analyzes the elderly person’s movement to track and

Bridge is a device that relieves anxiety for people who care for the elderly. It has the face of the analog watch and the inner workings of a smart watch which analyzes the elderly person’s movement to track and recognize patterns. The caretaker has an app on their phone that alerts them when the elderly person breaks an activity pattern which also allows them to quickly and easily communicate with the elderly person to check on them. Bridge also holds the elderly person's personal medical history to allow medical professionals to provide them with better care in the case of an emergency.

Contributors

Agent

Created

Date Created
2019-05

132428-Thumbnail Image.png

Unique High Fire Glaze Development

Description

Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered

Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered that using this glaze to spray over specific studio glazes produced a more pleasant color effect than the glaze by itself. A glossy clear glaze was created. The glaze crazed minimally, and color variants were created with the rare earth metals erbium, praseodymium, and neodymium, resulting in celadon-like glazes that were pink, green, and bluish purple respectively. Finally, A semi-matte stoneware glaze with high spodumene content was created with two specific color variations

Contributors

Agent

Created

Date Created
2019-05

132798-Thumbnail Image.png

Designing a Greenspace

Description

Through the course of this project, I worked to redesign an underused and conveniently located space on the Arizona State University Polytechnic campus in such a way as to bring the benefits of nature to students spending time on-campus. This

Through the course of this project, I worked to redesign an underused and conveniently located space on the Arizona State University Polytechnic campus in such a way as to bring the benefits of nature to students spending time on-campus. This paper outlines how I used the ideas behind biophilia and sensory gardens to provide visitors to the space the wholesome experience of nature in the small area of my selected location.It walks through the design process from site selection to the final planting plan, which considers not only the physical requirements of the plants but also their contribution to the space. I separated the chosen space into five distinct zones, each with their own purpose. Due to time constraints, I only produced planting and hardscape plans for three
of the five spaces. In redesigning this space, I placed emphasis on utilizing some methods for passive cooling and heating to preserve a comfortable environment throughout the year with minimal energy usage. These methods include protecting visitors from intense eastern, western, and overhead sun during the warmer months and using thermal masses to absorb heat during the day. For the landscape design component, I found plants whose colors, textures, and smells suited the purpose of each space and arranged them in such a way as to maximize the positive sensory effects of the plants. Because color in the
landscape was an essential component in parts of the design, I focused on providing yearlong color by staggering the bloom periods of different plants. In doing this, I devised a system to visually represent the bloom period of any given plant within the landscape plan. Finally, I generated a rough cost estimate for the materials needed to construct the site according to my hardscape and landscape plans.

Contributors

Agent

Created

Date Created
2019-05

132656-Thumbnail Image.png

DEVELOPMENT OF A SOFT ROBOTIC THIRD ARM

Description

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric arm, the fabric Soft Poly Limb (fSPL). For both arms I was responsible for the design of 3D printed components (molds, end caps, etc.) as well as the evaluation of the completed prototypes by comparing the actual performance of the arms to the finite element predictions. I contributed to the writing of two published papers describing the design and evaluation of the two arms. After the completion of the fSPL I attempted to create a quasi-static model of the actuators driving the fSPL.

Contributors

Agent

Created

Date Created
2019-05

133244-Thumbnail Image.png

Universal Design: NASA ASU Psyche Application

Description

In early 2026, the NASA Discovery Program will fall into orbit with a metal asteroid named Psyche. Through discovery and interaction, this exploration will give us insight into an asteroid that we cannot see or interpret. From a certain view,

In early 2026, the NASA Discovery Program will fall into orbit with a metal asteroid named Psyche. Through discovery and interaction, this exploration will give us insight into an asteroid that we cannot see or interpret. From a certain view, you can look at how this mission mimics that discovery with experimentation of our own senses. As a part of a team of eight seniors, we were tasked to help develop a mobile application that reflects the Psyche mission and shows the future of the project ten years from now. Since this is also a government funded project, it is pertinent to adhere to the ADA compliance guidelines required to make digital applications accessible to the larger public. As a designer, I wanted to push this concept further to showcase that accessibility is not something that should be stereotyped or discouraged from a design perspective. Each person that interacts with the application will have a different experience but it is this collaboration between the object and it's audience that creates this sense of discovery. Taking the mission's core values one step further, this application was designed and explored to uphold the foundations of what Universal Design is about. It is about connecting interested parties to the material they are looking for without unrealistic access that is dependent on ability.

Contributors

Agent

Created

Date Created
2018-05

133280-Thumbnail Image.png

Innovation Design Methods: A Case Study in Inter-Disciplinary Creativity and Modern Engineering Education

Description

This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace

This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering and its relation to academic education is examined. Next, program and project overviews of both the capstone senior design course and the InnovationSpace are detailed, followed by a comparison of the two course's curriculum. Finally, key differences are highlighted, and suggestions introduced that might serve to improve both courses in the future. The senior design capstone course was found to lack accountability and diversity leading to a lack of innovative solutions. However, the course simultaneously succeeded in maintaining wellaccepted traditional engineer practices and documentation. The InnovationSpace program on the other hand provides accountability, diversity, and modern approaches to product development.

Contributors

Agent

Created

Date Created
2018-05

133575-Thumbnail Image.png

A Footwear Product for Photographers: Conceptualizing. Marketing. Designing.

Description

Creative adventurers are a modern artistic subculture defined by aesthetic individualism and rugged outdoor practicality. Contemporary photographers and videographers who live an active outdoor lifestyle place significant demands on their shoes and feet wherever they work. As a result of

Creative adventurers are a modern artistic subculture defined by aesthetic individualism and rugged outdoor practicality. Contemporary photographers and videographers who live an active outdoor lifestyle place significant demands on their shoes and feet wherever they work. As a result of the increasing growth of photo based social media, part of producing creative content in this field involves artists interacting directly with their favorite brands through "product tagging" and other means of rapid networking. This energetic atmosphere of creativity and brand engagement presents a unique opportunity to introduce a footwear product specifically made for the brand-conscious visual artist. A collaborative shoe project between a major footwear brand such as Nike or Adidas and a major camera brand such as Canon or Sony is a unique and exciting way to meet the functional and aesthetic demands of this population.

Contributors

Agent

Created

Date Created
2018-05