Matching Items (10)
Filtering by

Clear all filters

136210-Thumbnail Image.png
Description
Waste generation in the U.S. has reached new heights, but the exploitation of Native American lands for waste disposal is nothing new. Many of the negative effects of massive waste production and toxic pollution, such as poor health outcomes and decreased property values, disproportionately burden impoverished, minority communities inside and

Waste generation in the U.S. has reached new heights, but the exploitation of Native American lands for waste disposal is nothing new. Many of the negative effects of massive waste production and toxic pollution, such as poor health outcomes and decreased property values, disproportionately burden impoverished, minority communities inside and outside the United States (Brulle and Pellow, 2006). Native American communities have long been exploited for their natural resources and land-use, but in recent decades Indian country has also become a common place to store nuclear, hazardous and municipal wastes. This project is a case study of a local Indian reservation, the Salt River Pima-Maricopa Indian Community, and examined the socio-historical context of the landfill operations in terms of five principles of environmental justice. Each principle was defined and key moments from the SRPMIC's landfill history were discussed to demonstrate ways that the situation has improved, stayed the same or worsened with regard to the rights outlined in each principle. It was concluded that there needs to be an acknowledgement by involved municipalities and industries of the historical context that make the SRPMIC and other nearby Native American communities "ideal" contractors for waste management. Additionally, while the SRPMIC could currently benefit from looking into the principles of environmental justice as a guide to manage past and operating landfills, the Community will have a specific opportunity to revisit these issues under closer scrutiny during the closure of the Salt River Landfill in 2032 in order to ensure more environmentally just outcomes. Finally, it was concluded that scholarship at the intersection of environmental justice and Native American communities should continue because looking closer at the ways that local Native American communities are facing and resisting environmental injustice can serve to develop future models for other communities facing similar challenges to achieving environmental justice.
ContributorsScott, Nicole Danielle (Author) / Kinzig, Ann (Thesis director) / Harlan, Sharon (Committee member) / Maienschein, Jane (Committee member) / Barrett, The Honors College (Contributor) / School of Community Resources and Development (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
133271-Thumbnail Image.png
Description
This thesis, done in a capstone course through the Arizona State University School of Sustainability, examines the current state of sustainability-related processes at all of Major League Baseball's Cactus League sites, with a focus on Salt River Fields. Through this close examination, a final report created of our findings and

This thesis, done in a capstone course through the Arizona State University School of Sustainability, examines the current state of sustainability-related processes at all of Major League Baseball's Cactus League sites, with a focus on Salt River Fields. Through this close examination, a final report created of our findings and suggestions were presented to executives from Major League Baseball and the two occupants of Salt River Fields: the Arizona Diamondbacks and the Colorado Rockies. The overall goal is to add value to Cactus League stadiums, clubs, and the fans while promoting sustainable initiatives and creating lasting change. With a team of 11 undergraduate and graduate students from ASU led by Colin Tetreault, research was conducted by examining similar efforts by major sports leagues and comparable organizations. Our team researched reports from organizations such as the National Hockey League to determine how we could implement our ideas on a large scale successfully. Determining that fan engagement is crucial to changing the culture and implementation of sustainability, we also researched ways to interact with fans on social media and cooperated with the social media teams from the Arizona Diamondbacks and the Colorado Rockies. Additionally, we visited every stadium in the Cactus League and met with representatives from each team to determine what sort of processes they have in place, if they have any suggestions or thoughts for our efforts, and we gave each of them advice as consultants. At each site, we also interviewed vendors, cleaning crews, and fans for more information. At Salt River Fields, we engaged the guest service attendants, social media team, vendors, the Jani King custodial team, and staff involved with operations for information and to suggest changes. We started a new initiative in cooperation with these entities known as the "Recycle Rally" where we engaged with fans about recycling information and collected their recyclables. Additionally, we surveyed fans on their personal views on sustainability at each game we attended. We also conducted two waste audits at Salt River Fields, where we examined a large sample size of waste, sorted all of it into categories, and weighed it on a scale to determine how much of each category of waste there was. This data was later plotted and analyzed.
ContributorsLassman, Matthew Joseph (Author) / Tetreault, Colin (Thesis director) / Benaza, Paesly (Committee member) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
135464-Thumbnail Image.png
Description
This ethnographic study explores the music festival phenomenon in the context of the Austin City Limits music festival, held in Austin, Texas with a total attendance of over 450,000 people annually. Using Glaser and Strauss' grounded theory method (1967), central questions concerning structure, community identity, sustainable consumption, and waste were

This ethnographic study explores the music festival phenomenon in the context of the Austin City Limits music festival, held in Austin, Texas with a total attendance of over 450,000 people annually. Using Glaser and Strauss' grounded theory method (1967), central questions concerning structure, community identity, sustainable consumption, and waste were generated from the ethnography. These topics were analyzed with supporting theory in cultural anthropology, sociology, and sustainability. The findings are the basis for our "local-washing" theory, suggesting that localness is utilized to create a sense of authenticity. It is our shared conclusion that local-washing is a prevalent phenomenon at the modern music festival and presents the impact of commercialization on the public sphere. The research conducted includes collecting ethnographic fieldnotes pertaining to festival-goers behaviors that we observed at the festival as well as an investigation of the waste at the festival. By attending the Austin City Limits music festival and utilizing the ethnographic research method, we gained a deeper understanding of what motivates and bonds people in the unique context of the music festival. Through this we found basis for an analysis of the sustainable consumption of food and beverages at the festival as well as waste behaviors and theories behind them including the idea of waste having an absent presence in society.
ContributorsWrobel, Aleksandra (Co-author) / Masri, Lena (Co-author) / Loebenberg, Abby (Thesis director) / Graff, Sarah (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148164-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and services to wealthy countries. This has put developing countries in a precarious position where people have had very few economic opportunities besides taking on the role of waste pickers, who not only face physical health consequences due to the work they do but also face exclusion from society due to the negative views of waste pickers. Many people view waste pickers as scavengers and people who survive off of doing dirty work, which creates tensions between waste pickers and others in society. This even leads to many countries outlawing waste picking and has led to the brutal treatment of waste pickers throughout the world and has even led to thousands of waste pickers being killed by anti-waste picker groups and law enforcement organizations in many countries. <br/> Waste pickers are often at the bottom of supply-chains as they take resources that have been used and discarded, and provide them to recyclers, waste management organizations, and others who are able to turn these resources into usable materials again. Waste pickers do not have many opportunities to rise above the situation they are in as waste picking has become the only option for many people who need to provide for themselves and their families. They are not compensated very well for the work they do, which also contributes to the situation where waste pickers are forced into a position of severe health risks, backlash from society and governments, not being able to seek better opportunities due to a lack of earning potential, and not being connected with end-users. Now is the time to create new business models that solve these large problems in our global society and create a sustainable way to ensure that waste pickers are treated properly around the world.

ContributorsKidd, Isabella Joy (Co-author) / Kapps, Jack (Co-author) / Urbina-Bernal, Alejandro (Thesis director) / Byrne, Jared (Committee member) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Morrison School of Agribusiness (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148090-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste were generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry, or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsVargas, Cassandra (Author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Food waste is a crucial issue in stores, restaurants and other institutions. Specifically, there is a high amount of food waste in grocery stores, especially in the produce section. As a result, environmental damage occurs, and many individuals struggle to have food in their homes. This thesis will analyze the

Food waste is a crucial issue in stores, restaurants and other institutions. Specifically, there is a high amount of food waste in grocery stores, especially in the produce section. As a result, environmental damage occurs, and many individuals struggle to have food in their homes. This thesis will analyze the cause, quantity, and effect of this waste, and how it can be changed or mitigated. An overarching question was posed to analyze these causes and effects of waste, asking how does the amount of produce waste that occurs in Scottsdale, Arizona contribute to environmental issues and what is being done to remedy this issue? As this is a difficult question to answer on its own, the research was broken down into two more answerable questions, which are Why does produce get wasted in grocery stores? How much of this occurs? and What remedies already exist to limit/reduce this waste? These questions are important because they contribute to knowledge and understanding about food waste, consumer waste, as well as the overall environmental impact of being wasteful. It is also important for both retailers and consumers to understand that waste has an immense and negative impact on the environment and contributes to climate change, and that taking steps to reduce this waste is essential.

ContributorsPagnillo, Mary (Author) / Haglund, LaDawn (Thesis director) / Holman, Christine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor)
Created2023-05
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164791-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
164792-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05