Matching Items (5)
Filtering by

Clear all filters

136974-Thumbnail Image.png
Description
The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional

The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional interfacing, casing, size, safety, and aesthetics. If the potential for an excellent ionization-based loudspeaker product were realized, it would be highly profitable in its reasonable cost of production, novelty, and place in a large and fitting market.
ContributorsMagnotto, Niccolo John (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the estimated cost for producing these proof-of-concept units in bulk is $19.41 per unit. While this is believed to be a pessimistic estimate of the price, the cost of production remains too high regardless for large-scale implementation. The thesis concludes by emphasizing the need for further research and development to optimize the design and reduce the cost of production. Despite the limitations imposed by price, the idea of using LoRa in detecting moisture in a diaper remains intriguing and promising, however, RFID technology has many advantages, such as size, cost, and passive power features.

ContributorsBetlaf, Garrett (Author) / Aberle, James (Thesis director) / McDonald, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
131572-Thumbnail Image.png
Description
In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things, however run off batteries. These batteries need to be charged

In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things, however run off batteries. These batteries need to be charged and up until a little while ago there was only one option available: wired chargers; however, because of the advancement of technology society has created a way to transfer power via magnetic fields. Now this concept has been around for a long time since the days of Nikola Tesla but just recently society has been able to apply his discoveries to charging these computers in our pockets. Unfortunately, the current models of these chargers come with a drawback as they are less efficient than wired chargers. However, this is the question our group has set out to answer. Is there any way possible to improve the efficiency of these wireless chargers so they are equal or even more efficient than wired chargers. This paper explores how to improve the efficiency in wireless chargers. Through research, simulations and testing the group has discovered areas that efficiency can be improved as well as makes recommendations to change the current wireless chargers on the market today. This paper also explores future applications of wireless chargers that can not only make life much easier but could also save lives in some cases. These applications can have many effects on hospitality, the medical field, as well as the supply chain and logistics of America.
ContributorsMcCulley, Matthew Alan (Co-author) / Cole, Kennedy (Co-author) / Chickamenahalli, Shamala (Thesis director) / Chakrabarti, Chaitali (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131181-Thumbnail Image.png
Description
The Founders Lab Thesis tasked each team with taking an idea and trying to form a business out of it. In the process, the thesis director would be there to guide each team and provide expertise where needed. The venture that was assigned originally to our team was a posture

The Founders Lab Thesis tasked each team with taking an idea and trying to form a business out of it. In the process, the thesis director would be there to guide each team and provide expertise where needed. The venture that was assigned originally to our team was a posture correcting device, however after numerous attempts to correspond reliably with the developers of this technology, it was decided that the team should move on to a new idea. Therefore, our team took on a venture named Altion Security: an initiative with the main goal being the safekeeping of customers interests. The product that we were tasked with is a bike alarm that simply rings out when it detects someone tampering with it. This product is a solution to the problem of bike thefts. 2 million bikes are stolen each year in North America, which translates roughly to a theft every 30 seconds (Project 529).
There are quite a few readily available products that one can buy if one looks past some of their flaws. A lot of these alarms either require a user to carry an extra communication device, or they are too big or expensive. The proposed solution merges all desirable features of a bike alarm into one module. In light of this, surveys were conducted to ascertain what these qualities would need to be. The top considerations for purchasing this alarm were how costly it would be, the false detection rate, and also the battery life. Additionally, the features that were most requested was the inclusion of a GPS and a camera. In order to incorporate these features, a three year plan was formulated which would culminate into a bike network in which each bike could communicate with other bikes. This would allow for an IOT network to be established, thus far exceeding expectations. The price point for this alarm is USD $10.00-15.00 and can come in a variety of colors. Additionally, this concept can be applied to many different scenarios, from protecting boats/jet skis and other aquatic vehicles, to houses as well. Furthermore, one could miniaturize this technology to be used in jewelry or accessories.
ContributorsOgunmefun, Adeoluwa (Co-author) / Gong, Alan (Co-author) / Parra, Rocio Ivette (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05