Matching Items (9)
Filtering by

Clear all filters

135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135421-Thumbnail Image.png
Description
Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord. Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord.  The severity of multiple sclerosis varies based on

Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord. Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord.  The severity of multiple sclerosis varies based on the each person and the progression of the disease. There are roughly 2.5 million people that suffer from this disease that life is changed dramatically from being diagnosed with no main way to ease into adjusting to a new lifestyle. The increase of people that are diagnosed with multiple sclerosis, and with a majority of those people being diagnosed in their early 20’s, there is a need for an application that will help patients manage their health. Multiple sclerosis leads to a lifestyle change, which includes various treatment options as well as routine doctor appointments.  The creation of the myMS Specialist application will allow patients with multiple sclerosis to live a more comfortable lifestyle while they easily track and manage their health through their mobile devices. Our application has seven components that all play an important role in adjusting to the new everyday lifestyle for a patient with multiple sclerosis. All seven components are largely intertwined with each other to help patients realize patterns in their diet, sleep, exercise and the weather that causes their symptoms to worsen. Our application not only connects to a patient’s doctor so that there is full access of information at all time to the doctor but provides beneficial research to help further the understanding of multiple sclerosis. This application will be marketed and available for purchase to not only patients but doctors. It is our goal to lessen the burden of a new lifestyle to a patient, create constant communication with one’s doctor and provide beneficial data to researchers.
ContributorsSaenz, Devon (Co-author) / Peterson, Tyler (Co-author) / Chomina-Chavez, Aram (Thesis director) / Staats, Cody (Committee member) / W. P. Carey School of Business (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Accountancy (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132840-Thumbnail Image.png
Description
The United States is in a period of political turmoil and polarization. New technologies have matured over the last ten years, which have transformed an individual’s relationship with society and government. The emergence of these technologies has revolutionized access to both information and misinformation. Skills such as bias recognition and

The United States is in a period of political turmoil and polarization. New technologies have matured over the last ten years, which have transformed an individual’s relationship with society and government. The emergence of these technologies has revolutionized access to both information and misinformation. Skills such as bias recognition and critical thinking are more imperative than in any other time to separate truth from false or misleading information. Meanwhile, education has not evolved with these changes. The average individual is more likely to come to uninformed conclusions and less likely to listen to differing perspectives. Moreover, technology is further complicating and compounding other issues in the political process. All of this is manifesting in division among the American people who elect more polarized politicians who increasingly fail to find avenues for compromise.

In an effort to address these trends, we founded a student organization, The Political Literates, to fight political apathy by delivering political news in an easy to understand and unbiased manner. Inspired by our experience with this organization, we combine our insights with research to paint a new perspective on the state of the American political system.

This thesis analyzes various issues identified through our observations and research, with a heavy emphasis on using examples from the 2016 election. Our focus is how new technologies like data analytics, the Internet, smartphones, and social media are changing politics by driving political and social transformation. We identify and analyze five core issues that have been amplified by new technology, hindering the effectiveness of elections and further increasing political polarization:

● Gerrymandering which skews partisan debate by forcing politicians to pander to ideologically skewed districts.
● Consolidation of media companies which affects the diversity of how news is shared.
● Repeal of the Fairness Doctrine which allowed media to become more partisan.
● The Citizens United Ruling which skews power away from average voters in elections.
● A Failing Education System which does not prepare Americans to be civically engaged and to avoid being swayed by biased or untrue media.

Based on our experiment with the Political Literates and our research, we call for improving how critical thinking and civics is taught in the American education system. Critical thought and civics must be developed pervasively. With this, more people would be able to form more sophisticated views by listening to others to learn rather than win, listening less to irrelevant information, and forming a culture with more engagement in politics. Through this re-enlightenment, many of America’s other problems may evaporate or become more actionable.
ContributorsStenseth, Kyle (Co-author) / Tumas, Trevor (Co-author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133585-Thumbnail Image.png
Description
Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for

Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for Company X is finding targeted use cases to which Company X can market these products and increase sales. This thesis reports how our team has researched, calculated, and financially forecasted use cases for both the PRODUCT A and Product B. The Education and Healthcare industries were identified as those providing significant potential value propositions and an array of potential use cases from which we could choose to evaluate. Key competitors, market dynamics, and information obtained through interviews with a Product Line Analyst were used to size the available, obtainable, and attainable market numbers for Company X. The models built for this research provided insight into the PRODUCT A and Product B's potential growth in the education and healthcare industries. This led to the selection of education and healthcare use cases for the Product B and the PRODUCT A use cases for healthcare. This report concludes with recommendations for success in education and healthcare with the PRODUCT A and Product B.
ContributorsHoward, James (Co-author) / Kazmi, Abbas (Co-author) / Ralston, Nicholas (Co-author) / Salamatin, Mikkaela Alexis (Co-author) / Simonson, Mark (Thesis director) / Hopkins, David (Committee member) / W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134711-Thumbnail Image.png
Description
The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different

The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different proposed strategies. Company X is a leading producer of silicon chips which seeks to remain one of the leading forces in new technologies. Currently Company X wants to assess the value and risks associated with introducing a new packaging technology (FO-WLP) into their products either by developing the technology in-house or outsourcing production. The first portion of the research consisted mostly of gathering the necessary business acumen to be able to to fully understand our research findings. Market research was conducted to discover what competitors exist and what inputs should be included for the model with help from employees at Company X. The research then proceeded with the identification of three possible strategies and construction of financial models to analyze these options. Using the results from our analysis we were able to develop our recommendation for Company X and lay out the next steps which the Company needs to take before investing in the new technology.
ContributorsRubenzer, Jack (Co-author) / Galaviz, Roberto (Co-author) / Mariani, Stephanie (Co-author) / Mecinas, Freddy (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133432-Thumbnail Image.png
Description
We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that,

We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that, to decrease the net PPE of Company X, a sale-leaseback transaction would help Company X reduce their balance sheet and provided financing to advance their manufacturing capabilities.
ContributorsBhat, Arjun Khandige (Co-author) / Brock, Ethan (Co-author) / Gamperl, Max (Co-author) / Gupta, Viraj (Co-author) / Macha, Sanketh (Co-author) / Simonson, Mark (Thesis director) / Duran, Juan Carlos (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147680-Thumbnail Image.png
Description

With a prison population that has grown to 1.4 million, an imprisonment rate of 419 per 100,000 U.S. residents, and a recidivism rate of 52.2% for males and 36.4% for females, the United States is facing a crisis. Currently, no sufficient measures have been taken by the United States to

With a prison population that has grown to 1.4 million, an imprisonment rate of 419 per 100,000 U.S. residents, and a recidivism rate of 52.2% for males and 36.4% for females, the United States is facing a crisis. Currently, no sufficient measures have been taken by the United States to reduce recidivism. Attempts have been made, but they ultimately failed. Recently, however, there has been an increase in experimentation with the concept of teaching inmates basic computer skills to reduce recidivism. As labor becomes increasingly digitized, it becomes more difficult for inmates who spent a certain period away from technology to adapt and find employment. At the bare minimum, anybody entering the workforce must know how to use a computer and other technological appliances, even in the lowest-paid positions. By incorporating basic computer skills and coding educational programs within prisons, this issue can be addressed, since inmates would be better equipped to take on a more technologically advanced labor market.<br/>Additionally, thoroughly preparing inmates for employment is a necessity because it has been proven to reduce recidivism. Prisons typically have some work programs; however, these programs are typically outdated and prepare inmates for fields that may represent a difficult employment market moving forward. On the other hand, preparing inmates for tech-related fields of work is proving to be successful in the early stages of experimentation. A reason for this success is the growing demand. According to the U.S. Bureau of Labor Statistics, employment in computer and information technology occupations is projected to grow 11 percent between 2019 and 2029. This is noteworthy considering the national average for growth of all other jobs is only 4 percent. It also warrants the exploration of educating coders because software developers, in particular, have an expected growth rate of 22 percent between 2019 and 2029. <br/>Despite the security risks of giving inmates access to computers, the implementation of basic computer skills and coding in prisons should be explored further. Programs that give inmates access to a computing education already exist. The only issue with these programs is their scarcity. However, this is to no fault of their own, considering the complex nature and costs of running such a program. Accordingly, this leaves the opportunity for public universities to get involved. Public universities serve as perfect hosts because they are fully capable of leveraging the resources already available to them. Arizona State University, in particular, is a more than ideal candidate to spearhead such a program and serve as a model for other public universities to follow. Arizona State University (ASU) is already educating inmates in local Arizona prisons on subjects such as math and English through their PEP (Prison Education Programming) program.<br/>This thesis will focus on Arizona specifically and why this would benefit the state. It will also explain why Arizona State University is the perfect candidate to spearhead this kind of program. Additionally, it will also discuss why recidivism is detrimental and the reasons why formerly incarcerated individuals re-offend. Furthermore, it will also explore the current measures being taken in Arizona and their limitations. Finally, it will provide evidence for why programs like these tend to succeed and serve as a proposal to Arizona State University to create its own program using the provided framework in this thesis.

ContributorsAwawdeh, Bajis Tariq (Author) / Halavais, Alexander (Thesis director) / Funk, Kendall (Committee member) / School of Social and Behavioral Sciences (Contributor, Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05