Matching Items (10)
Filtering by

Clear all filters

136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134719-Thumbnail Image.png
Description
Smartphones have become an integral component of lifestyles worldwide, acting as mobile computers capable of life organization. They remain the most quickly cycled consumer electronic, owned for no more than 3 years on average. Individuals continue to upgrade their smartphones quickly, stemming from the desire for more power and better

Smartphones have become an integral component of lifestyles worldwide, acting as mobile computers capable of life organization. They remain the most quickly cycled consumer electronic, owned for no more than 3 years on average. Individuals continue to upgrade their smartphones quickly, stemming from the desire for more power and better features. In 2016, there were 1.15 billion smartphone upgrades, resulting in a growing used smartphone market valued at \$18 billion. Individuals continue to invest time and effort to sell their smartphone, receiving payment of less than market value. In regards to value-minded users with solidified schedules, I created Trusted Trade-in. This startup provides the bustling middle class with the ability to upgrade their smartphone in an efficient and valuable manner. Compared to current solutions, Trusted Trade-in offers an all-in-one upgrade system. The creation of this startup involved the complete creation of a business model in addition to the coding of a responsive website. An online-based business, customers will be able to visit the Trusted Trade-in website and be given the options to trade-in or trade-up. Competing against Craigslist, eBay and Verizon, Trusted Trade-in features a combined smartphone resale and upgrade process. If the decision is made to trade-in, the customer will be quoted for their current smartphone according to specific physical criteria. The trade-up option will request the same information from the customer and allow them to select a new model for their upgrade. This exciting and innovative marketplace will completely transform the way people upgrade their smartphones through financial and time-based savings.
ContributorsWoods, Quintin Delane (Author) / Sebold, Brent (Thesis director) / Lin, Elva S. Y. (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135721-Thumbnail Image.png
Description
Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles. When a soldier is fatigued, they are unable to perform at their maximum potential and are also more susceptible to

Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles. When a soldier is fatigued, they are unable to perform at their maximum potential and are also more susceptible to injury. For military personnel to save time and money as well as become more efficient within the missions they deploy soldiers, muscle fatigue should be predicted. Predicting fatigue will allow for a reduced rate of negative exercise-related impacts. This means that soldiers will be able to avoid potential life threatening situations they encounter due to the muscle fatigue. The newest technology in wearable devices includes clothing that incorporates heart rate monitors, breathing rate and breathing depth sensors, and a database that converts this information into the amount of calories burned during a workout. Fatigue can be tracked and predicted in the military using wearable clothing with activity sensors, preventing further injury to the soldiers and optimizing performance output at all times. For military personnel, the ability to predict fatigue using this technology would be beneficial to the soldiers and the military as a whole.
ContributorsFalk, Brady Thomas (Author) / Lockhart, Thurmon (Thesis director) / Williams, Deborah (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148388-Thumbnail Image.png
Description

For many, a long-distance hike on the 2,650+ mile Pacific Crest Trail (PCT) is the adventure of a lifetime. The federally designated National Scenic Trail passes through 48 Wilderness Areas in California, Washington, and Oregon on its way from Mexico to Canada. The trail experience on the PCT has been

For many, a long-distance hike on the 2,650+ mile Pacific Crest Trail (PCT) is the adventure of a lifetime. The federally designated National Scenic Trail passes through 48 Wilderness Areas in California, Washington, and Oregon on its way from Mexico to Canada. The trail experience on the PCT has been changing rapidly over the last 20 years due to two main factors: a four-fold increase in hikers attempting the whole trail each season; and hikers’ rapid adoption of digital technology like smartphones, GPS, and satellite messengers. Through a literature review and accompanying hiker survey, this study aimed to determine how these two factors have combined to alter the trail experience. Despite increased traffic on the trail, hikers appear to still be able to find ample solitude and a feeling of escape from society, and they reported being more likely to form lasting friendships as part of a “trail family”. However, increased traffic has altered many of the sensitive natural landscapes along the trail, contributed to the retirement of some iconic “trail angels” and led to increased conflict between subcultures within the community. Digital technology usage, particularly the use of smartphones and GPS-capable mapping apps, seems to be linked to decreased feelings of solitude, self-sufficiency, and escape. However, digital devices have helped democratize long-distance hiking by simplifying the logistics of long-distance hikes. Users of the devices also did not report reduced feelings of freedom or challenge from their hikes. Moreover, device users still felt that they were disconnecting with technology when hiking on the trail. Acknowledging both positive and negative effects of the changing trail experience, hikers can make more informed decisions about how to mitigate the negative impacts and maximize the positive impacts on the aspects of the trail experience they care the most about.

ContributorsDeSimone, Dante (Author) / Shaeffer, Duncan (Thesis director) / Schmidt, Peter (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Phoenix Police officers are required to wear Body-Worn Cameras while out on patrol and must have the cameras turned on when interacting with the public. The Body-Worn Camera (BWC) Policy was initially established as a means of accruing evidence and increasing police accountability when in the presence of the public.

Phoenix Police officers are required to wear Body-Worn Cameras while out on patrol and must have the cameras turned on when interacting with the public. The Body-Worn Camera (BWC) Policy was initially established as a means of accruing evidence and increasing police accountability when in the presence of the public. However, BWC technology has the ability to perform many other useful functions. The information provided by the cameras could be used to reduce the paperwork done by police officers while on duty, thus allowing them to spend more time taking calls from dispatch. The versatility of the body-worn camera and its components also make it an ideal pairing for an electrocardiograph (ECG) device to aid in the health of officers and law enforcement retention.

ContributorsChacon, Elyana (Author) / Ross, Heather (Thesis director) / Scott, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

This study investigates the impact of technology and social media on religious practices and beliefs concerning death and the afterlife. As the concept of a "Digital Afterlife" becomes more prevalent, questions surrounding its compatibility with religious belief systems and implications on privacy arise. The COVID-19 pandemic has intensified the issue,

This study investigates the impact of technology and social media on religious practices and beliefs concerning death and the afterlife. As the concept of a "Digital Afterlife" becomes more prevalent, questions surrounding its compatibility with religious belief systems and implications on privacy arise. The COVID-19 pandemic has intensified the issue, prompting social media platforms to develop digital wills, although their usage remains limited. This research seeks to explore how the Information Age is shaping the concept of the afterlife, its alignment with major religious belief systems, and perceptions of the digital afterlife across various societal groups. Furthermore, the study examines the role of social media in redefining religious values, norms, and boundaries, highlighting the importance of engaging in an ongoing conversation about the complex and evolving intersection of religion, technology, and death.

ContributorsAlsabah, Wid (Author) / Hussain, Faheem (Thesis director) / Mostafa, Mashiat (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
164188-Thumbnail Image.png
Description

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with advanced prosthetics. As prosthetic limbs become more technologically advanced and intertwined with one’s identity, it is crucial that laws are made to draw a new line between person and property. The innovation of prosthetic limbs has just begun and will surely face setbacks along the way, but the benefits will be worth it once the law catches up with the rapidly advancing technology.

ContributorsRogers, Madison (Author) / Marchant, Gary (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05