Matching Items (28)
Filtering by

Clear all filters

156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135678-Thumbnail Image.png
Description
The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With

The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With the advent of Google, modern day students are able to arrive at the same information within 15 seconds. This technology, the internet, is reshaping the way we learn. As a result, the academic integrity policies that are set forth at the college level seem to be outdated, often prohibiting the use of technology as a resource for learning. The purpose of this paper is to explore why exactly these resources are prohibited. By contrasting a subject such as Computer Science with the Humanities, the paper explores the need for the internet as a resource in some fields as opposed to others. Taking a look at the knowledge presented in Computer Science, the course structure, and the role that professors play in teaching this knowledge, this thesis evaluates the epistemology of Engineering subjects. By juxtaposing Computer Science with the less technology reliant humanities subjects, it is clear that one common policy outlining academic integrity does not suffice for an entire university. Instead, there should be amendments made to the policy specific to each subject, in order to best foster an environment of learning at the university level. In conclusion of this thesis, Arizona State University's Academic Integrity Policy is analyzed and suggestions are made to remove ambiguity in the language of the document, in order to promote learning at the university.
ContributorsMohan, Sishir Basavapatna (Author) / Brake, Elizabeth (Thesis director) / Martin, William (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136218-Thumbnail Image.png
Description
This study addresses the question: is it possible for consumers to make informed decisions regarding their privacy, while using smartphones, in the face of the complex web of actors, incentives, and conveniences afforded by the technology? To address this question, the Social Construction of Technology (SCOT) model is used to

This study addresses the question: is it possible for consumers to make informed decisions regarding their privacy, while using smartphones, in the face of the complex web of actors, incentives, and conveniences afforded by the technology? To address this question, the Social Construction of Technology (SCOT) model is used to analyze common situations consumers find themselves engaged in. Using the SCOT model, relevant actors are identified; their interpretations of various technologies are expressed; relative power is discussed; and possible directions for closure are examined. This analysis takes place by looking at three specific themes within privacy disputes in general: anonymity, confidentiality, and surveillance. These themes are compared and contrasted in regards to their impact on perception of privacy and implications for closure. Arguments are supported through evidence drawn from scholarship on the topic as well as industry and news media. Conclusions are supported through the framework of anticipatory governance.
ContributorsKula, Shane (Author) / Hackett, Ed (Thesis director) / Sarewitz, Daniel (Committee member) / Wetmore, Jamey (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133636-Thumbnail Image.png
Description
All of the modern technology tools that are being used today, have a purpose to support a variety of human tasks. Ambient Intelligence is the next step to transform modern technology. Ambient Intelligence is an electronic environment that is sensitive and responsive to human interaction/activity. We understand that Ambient Intelligence(AmI)

All of the modern technology tools that are being used today, have a purpose to support a variety of human tasks. Ambient Intelligence is the next step to transform modern technology. Ambient Intelligence is an electronic environment that is sensitive and responsive to human interaction/activity. We understand that Ambient Intelligence(AmI) concentrates on connectivity within a person's environment and the purpose of having a new connection is to make life simpler. Today, technology is in the transition of a new lifestyle where technology is discretely living with us. Ambient Intelligence is still in progress, but we can analyze the technology we have today, ties a relationship with Ambient Intelligence. In order to examine this concern, I investigated how much awareness/knowledge users that range from Generation X to Xennials, that had experience from replacing habitual items and technologies they use on a daily basis. A few questions I mainly wanted answered: - What kind of technologies, software, or tech services replace items you use daily? - What kind of benefits did the technology give you, did it change the way you think/act on any kind of activities? - What kind of expectations/concerns do you have for future technologies? To accomplish this, I gathered information from interviewing multiples groups: millennials and other older generations (33+ years old). I retrieved data from students at Arizona State University, Intel Corporation, and a local clinic. From this study, I've discovered from both groups, that both sides agree that modern technology is rapidly growing to a point that computers think as humans. Through multiple interviews and research, I have found that the technology today makes an impact through all aspects of our lives and through artificial intelligence. Furthermore, I will discuss and predict what will society will encounter later on as the new technology discretely arises.
ContributorsPascua, Roman Paolo Bustos (Author) / Yang, Yezhou (Thesis director) / Caviedes, Jorge (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137243-Thumbnail Image.png
Description
The focus shift towards Silicon Valley and similar ecosystems in the past decade, the recent boom in startups and entrepreneurship, and the resurgence of venture capital funding is fueling rapid advancement of modern technologies, such as software, biotechnology, and renewable energy. One facet of the growing entrepreneurial landscape features healthcare

The focus shift towards Silicon Valley and similar ecosystems in the past decade, the recent boom in startups and entrepreneurship, and the resurgence of venture capital funding is fueling rapid advancement of modern technologies, such as software, biotechnology, and renewable energy. One facet of the growing entrepreneurial landscape features healthcare technology—a field of research centered upon various technical advances in medicine, software, and hardware. Trends in healthcare technology commercialization represent a promising opportunity for disruption in the healthcare industry. The integration of rapidly iterating software with medical research, timed perfectly with the passage of the Affordable Care Act and the boom of venture capital investment in both Big Data and mobile technology, has the healthcare technology primed for explosive growth over the next decade. Investment data indicates that strong public market activity in the past year will continue to fuel venture capital growth in both the biotechnology and digital health sectors, with the potential for multiple large exits by life sciences companies, more than even software, in the coming year.
ContributorsPatel, Nisarg (Co-author) / Yun, Kwanho (Co-author) / Wang, Xiao (Thesis director) / Marchant, Gary (Committee member) / Peck, Sidnee (Committee member) / Barrett, The Honors College (Contributor) / Department of Management (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134133-Thumbnail Image.png
Description
Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the

Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the actual effects of hackathons especially at the collegiate level. This makes justifying the usage of valuable time and resources to host hackathons difficult for tech companies and academic institutions. This thesis specifically examines the effects of collegiate hackathons through running a collegiate hackathon known as Desert Hacks at Arizona State University (ASU). The participants of Desert Hacks were surveyed at the start and at the end of the event to analyze the effects. The results of the survey implicate that participants have grown in base computer programming skills, inclusion in the tech community, overall confidence, and motivation for the technological field. Through these results, this study can be used to help justify the necessity of collegiate hackathons and events similar.
ContributorsLe, Peter Thuan (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134134-Thumbnail Image.png
Description
In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in

In today's world, technology plays a large role in everyone's life. However, there is a short supply of professionals to fill the roles in the computing field. When examining closer, it is clear that one group has a smaller representation: women. This can be contributed to many factors early in the women's lives and academic careers. In hopes of increasing the number of women computing professionals, this thesis aimed to understand the problem of a lack of women in technology and studied how hackathons could be a possible solution. The research followed Desert Hacks as it examines the typical participants as well as the hackathons effects on women's morale in technology. Two important questions during the investigation were what kind of women are attending hackathons and how do women feel about the technology industry after a hackathon? The results suggested that hackathon had an overall positive effect on women's motivation in the computing field. Additionally, most research participants believed that everyone has the potential to do well in the field and that gender inclusion is important for the industry. This ideology can foster a healthy environment for women to become more motivated in computing. Through these results, hackathons can be seen as another mean to help motivate women in the field and open up the possibility of future studies of women and hackathons.
ContributorsVo, Thong Bach (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
The topic of my creative project centers on the question of "How can the audience's choices influence dancers' improvisation?" This dance work seeks to redefine the relationship between audience and performers through integration of audience, technology, and movement in real-time. This topic was derived from the fields of Computer Science

The topic of my creative project centers on the question of "How can the audience's choices influence dancers' improvisation?" This dance work seeks to redefine the relationship between audience and performers through integration of audience, technology, and movement in real-time. This topic was derived from the fields of Computer Science and Dance. To answer my main question, I need to explore how I can interconnect the theory of Computer Science/fundamentals of a web application and the elements of dance improvisation. This topic interests me because it focuses on combining two studies that do not seem related. However, I find that when I am coding a web application, I can insert blocks of code. This relates to dance improvisation where I have a movement vocabulary, and I can insert different moves based on the context. The idea of gathering data from an audience in real time also interests me. I find that data is most useful when a story can be deduced from that data. To figure out how I can use dance to create and tell a story about the data that is collected, I find that to be intriguing as well. The main goals of my Creative Project are to learn the skills needed to develop a web application using the knowledge and theory that I am acquiring through Computer Science as well as learning about the skills needed to produce a performance piece. My object for the overall project is to create an audience-interactive experience that presents choices for dancers and creates a connection between two completely different studies: Computer Science and Dance. My project will consist of having the audience enter their answers to preset questions via an online voting application. The stage background screen will be utilized to show the question results in percentages in the form of a chart. The dancers will then serve as a live interpretation of these results. This Creative Project will serve as a gateway between the work that has been cultivated in my studies and the real world. The methods involve exploring movement qualities in improvisation, communicating with my cast about what worked best for the transitions between each section of the piece, and testing for the web applications. I learned the importance of having structure within improvisational movement for the purpose of choreography. The significance of structure is that it provides direction, clarity, and a sense of unification for the dancers. I also learned the basics of the programming language, Python, in order to develop the two real-time web applications. The significance of learning Python is that I will be able to add this to my skillset of programming languages as well as build upon my knowledge of Computer Science and develop more real-world applications in the future.
ContributorsNgai, Courtney Taylor (Author) / Britt, Melissa (Thesis director) / Standley, Eileen (Committee member) / Computer Science and Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135037-Thumbnail Image.png
Description
Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive

Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive way. The Ask Dr. Discovery project seeks to address the challenge of conducting efficient, affordable, and large-scale science museum evaluation via an interactive app aimed at collecting direct visitor feedback through use of the app and through questionnaires that also collect demographics. This thesis investigates how the demographics of metro Phoenix science museum visitors as a whole compare to the Hispanic/Latino population of visitors, and makes use of visitor feedback from Ask Dr. Discovery to provide useful data for science museum evaluation. An analysis of responses revealed that the majority of the participants in the study (n=785) were White (Non-Hispanic) (65.59%), were 36-45 years old (36.18%) and hold a graduate degree (27.64%). Most Hispanic/Latino participants in the study were 26-35 years old (36.36%) and completed some college (28.67%). Most participants from both participant groups have never visited the museum before (32.99% of all participants; 33.57% of all Hispanics/Latinos). Further analysis suggest that museum visits may be independent of age and visitor group size. Visitor interest in science museum exhibits may be independent of their use of free time science-related activities. Data suggests that there was no real difference in exhibit interest across two different versions of the app ("modes"). Analysis of negative visitor feedback showed different question types, questions asked, and time spent on the app. Data log questions revealed the difference in time spent on the app and complexity of questions asked between adults and children, as well as the location of participants in the museum. There was no major correlation between mode type and number of questions asked, and length of use and number of questions asked.
ContributorsFernandez, Ivan (Author) / Bowman, Judd (Thesis director) / Bowman, Catherine (Committee member) / Nelson, Brian (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12