Matching Items (4)
Filtering by

Clear all filters

136670-Thumbnail Image.png
Description
Improvised explosive devices (IEDs) have become a major threat to military personnel in recent years. In the United States Army, Mission Payload Operators (MPOs) operate cameras from unmanned aerial vehicles (UAVs) to detect the threat of IEDs using real-time images received. Previous researchers obtained the expert knowledge of twelve MPOs

Improvised explosive devices (IEDs) have become a major threat to military personnel in recent years. In the United States Army, Mission Payload Operators (MPOs) operate cameras from unmanned aerial vehicles (UAVs) to detect the threat of IEDs using real-time images received. Previous researchers obtained the expert knowledge of twelve MPOs at Fort Huachuca and learned that they rely on "behavioral signatures," the behavioral and environmental cues associated with IED threat rather than the IED itself (Cooke, Hosch, Banas, Hunn, Staszewski & Fensterer, 2010). To the best of our knowledge, no formal MPO training exists and all training is acquired on-the-job. The end goal is to create training systems for future MPOs using cognitive engineering based on expert skill (CEBES) that focus on detection of behavioral cues associated with IED threats. The complexity and dynamicity of cues associated with IED emplacement is to be noted, as such cues are influenced by sociocultural knowledge and often develop over significant periods of time. A dynamic full motion video simulation environment has been created, and embedded with cues elicited from expert MPOs. A three-part simulation has been created. The next step is verifying critical cues MPOs identify and focus on using eye tracking equipment.
ContributorsKnobloch, Ashley Kay (Author) / Cooke, Nancy (Thesis director) / Branaghan, Russ (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Human Systems Engineering (Contributor)
Created2014-12
135520-Thumbnail Image.png
Description
With the help of some Information Measurement Theory (IMT), Kashiwagi Solutions Model (KSM), and deductive logic background, supply chain managers can start utilizing a new way to effectively and efficiently negotiate contracts. Developed by Dr. Dean Kashiwagi, the Best Value Approach has been 98% successful with over 1,800 projects for

With the help of some Information Measurement Theory (IMT), Kashiwagi Solutions Model (KSM), and deductive logic background, supply chain managers can start utilizing a new way to effectively and efficiently negotiate contracts. Developed by Dr. Dean Kashiwagi, the Best Value Approach has been 98% successful with over 1,800 projects for the past 20 years. The process gives vendors/suppliers the power to use their expertise. In return for not having to follow the rules set by the client/buyer, the vendor must show documentation and plans of risk management, value added processes, and metrics.
ContributorsPhan, Alice (Co-author) / Holtzman, Krista (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / School of International Letters and Cultures (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158201-Thumbnail Image.png
Description
Nuclear Power Plants (NPP) have complex and dynamic work environments. Nuclear safety and organizational management rely largely on human performance and teamwork. Multi-disciplinary teams work interdependently to complete cognitively demanding tasks such as outage control. The outage control period has the highest risk of core damage and radiation exposure. Thus,

Nuclear Power Plants (NPP) have complex and dynamic work environments. Nuclear safety and organizational management rely largely on human performance and teamwork. Multi-disciplinary teams work interdependently to complete cognitively demanding tasks such as outage control. The outage control period has the highest risk of core damage and radiation exposure. Thus, team coordination and communication are critically important during this period. The purpose of this thesis is to review and synthesize teamwork studies in NPPs, outage management studies, official Licensee Event Reports (LER), and Inspection Reports (IRs) to characterize team brittleness in NPP systems. Focusing on team brittleness can provide critical insights about how to increase NPP robustness and to create a resilient NPP system. For this reason, more than 900 official LERs and IRs reports were analyzed to understand human and team errors in the United States (US) nuclear power plants. The findings were evaluated by subject matter experts to create a better understanding of team cognition in US nuclear power plants. The results of analysis indicated that human errors could be caused by individual human errors, team errors, procedural errors, design errors, or organizational errors. In addition to these, some of the findings showed that number of reactors, operation year and operation mode could affect the number of reported incidents.
ContributorsAKCA, SALLY SALIHA (Author) / Cooke, Nancy (Thesis advisor) / Niemczyk, Mary (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2020
161959-Thumbnail Image.png
Description
The prevalence of autonomous technology is advancing at a rapid rate and is becoming more sophisticated. As this technology becomes more advanced, humans and autonomy may work together as teammates in various settings. A crucial component of teaming is trust, but to date, researchers are limited in assessing trust calibration

The prevalence of autonomous technology is advancing at a rapid rate and is becoming more sophisticated. As this technology becomes more advanced, humans and autonomy may work together as teammates in various settings. A crucial component of teaming is trust, but to date, researchers are limited in assessing trust calibration dynamically in human-autonomy teams. Traditional methods of measuring trust (e.g., Likert scale questionnaires) capture trust after the fact or at a specific time. However, trust fluctuates, and determining what causes this might give machine designers insight into how machines can be improved upon so that operator’s trust towards the machines is more properly calibrated. This thesis aimed to assess the validity of an interaction-based metric of trust: anticipatory pushing of information. Anticipatory pushing of information refers to teammate A anticipating the needs of teammate B and pushing that information to teammate B. It was hypothesized there would be a positive relationship between the frequency of anticipatory pushing and self-reported trust scores. To test this hypothesis, text chat data and self-reported trust scores were analyzed in a previously conducted study in two different sessions (routine and degraded). Findings indicate that the anticipatory pushing of information and the self-reported trust scores between the human-human pairs in the degraded sessions were higher than the routine sessions. In degraded sessions, the anticipatory pushing of information between the human-human pairs was associated with human-human trust.
ContributorsBhatti, Shawaiz (Author) / Cooke, Nancy (Thesis advisor) / Chiou, Erin K (Committee member) / Gutzwiller, Robert (Committee member) / Arizona State University (Publisher)
Created2021